

Routinator 0.14.0-dev

Routinator 3000 is free, open-source RPKI Relying Party software made by NLnet Labs [https://nlnetlabs.nl]. The project is written in Rust, a programming
language designed for performance and memory safety.

	Lightweight and portable
	Routinator has minimal system requirements and it can run on almost any
hardware and platform, with packages available for most. You can also
easily run with Docker or Cargo, the Rust package manager.

	Full-featured and secure
	Routinator runs as a service that periodically downloads and verifies RPKI
data. The built-in HTTPS server offers a user interface, API endpoints for
various file formats, as well as logging, status and Prometheus metrics.

	Flexible RPKI-to-Router (RTR) support
	Routinator has a built-in RTR server to let routers fetch verified RPKI
data. You can also run RTR as a separate daemon using our RPKI data proxy
RTRTR [https://rtrtr.docs.nlnetlabs.nl/en/stable/index.html], letting you centralise validation and securely
distribute processed data to various locations.

	Open-source with professional support services
	NLnet Labs offers professional support and consultancy services [https://www.nlnetlabs.nl/services/contracts/] with a service-level
agreement. Community support is available on Discord [https://discord.gg/8dvKB5Ykhy] and our mailing list [https://lists.nlnetlabs.nl/mailman/listinfo/rpki]. Routinator is
liberally licensed under the BSD 3-Clause license [https://github.com/NLnetLabs/routinator/blob/main/LICENSE].

[image: Discord] [https://discord.gg/8dvKB5Ykhy] [image: Mastodon] [https://fosstodon.org/@nlnetlabs]

[image: Routinator 3000]

Installation

System Requirements

Routinator has minimal system requirements. When choosing a system, a
powerful CPU is not required. Make sure you have 1GB of available memory and
4GB of disk space for the application.

Inode Usage

Please keep in mind that the RPKI consists of a great number of small files.
As a result, Routinator will use a large amount of inodes. You should
accommodate for at least two million inodes. This will give you ample margin
for the RPKI repositories to grow over time, as adoption increases.

Alternatively, you could opt to use a file system such as ZFS, which doesn’t
use inodes, or btrfs, where inodes are allocated dynamically as needed.

Tip

The df -i command shows the amount of inodes available, used,
and free.

Firewall Configuration

As new RPKI repositories can emerge in any IP address range and on any domain
name, outbound traffic must not be blocked based on IP or DNS in any way.
Routinator only needs to establish outbound connections via HTTPS and rsync,
on ports 443 and 873, respectively.

Binary Packages

Getting started with Routinator is really easy by installing a binary package
for either Debian and Ubuntu or for Red Hat Enterprise Linux (RHEL) and
compatible systems such as Rocky Linux. Alternatively, you can run with
Docker.

You can also build Routinator from the source code using Cargo, Rust’s build
system and package manager. Cargo lets you to run Routinator on almost any
operating system and CPU architecture. Refer to the Building From Source section
to get started.

DebianUbuntuRHEL/CentOSDocker
To install a Routinator package, you need the 64-bit version of one of
these Debian versions:

	Debian Bookworm 12

	Debian Bullseye 11

	Debian Buster 10

	Debian Stretch 9

Packages for the amd64/x86_64 architecture are available for
all listed versions. In addition, we offer armhf architecture
packages for Debian/Raspbian Bullseye, and arm64 for Buster.

First update the apt package index:

sudo apt update

Then install packages to allow apt to use a repository over HTTPS:

sudo apt install \
 ca-certificates \
 curl \
 gnupg \
 lsb-release

Add the GPG key from NLnet Labs:

curl -fsSL https://packages.nlnetlabs.nl/aptkey.asc | sudo gpg --dearmor -o /usr/share/keyrings/nlnetlabs-archive-keyring.gpg

Now, use the following command to set up the main repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-keyring.gpg] https://packages.nlnetlabs.nl/linux/debian \
$(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/nlnetlabs.list > /dev/null

Update the apt package index once more:

sudo apt update

You can now install Routinator with:

sudo apt install routinator

After installation Routinator will run immediately as the user
routinator and be configured to start at boot. By default, it will
run the RTR server on port 3323 and the HTTP server on port 8323.
These, and other values can be changed in the configuration
file located in
/etc/routinator/routinator.conf.

You can check the status of Routinator with:

sudo systemctl status routinator

You can view the logs with:

sudo journalctl --unit=routinator

To install a Routinator package, you need the 64-bit version of one of
these Ubuntu versions:

	Ubuntu Jammy 22.04 (LTS)

	Ubuntu Focal 20.04 (LTS)

	Ubuntu Bionic 18.04 (LTS)

	Ubuntu Xenial 16.04 (LTS)

Packages are available for the amd64/x86_64 architecture only.

First update the apt package index:

sudo apt update

Then install packages to allow apt to use a repository over HTTPS:

sudo apt install \
 ca-certificates \
 curl \
 gnupg \
 lsb-release

Add the GPG key from NLnet Labs:

curl -fsSL https://packages.nlnetlabs.nl/aptkey.asc | sudo gpg --dearmor -o /usr/share/keyrings/nlnetlabs-archive-keyring.gpg

Now, use the following command to set up the main repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-keyring.gpg] https://packages.nlnetlabs.nl/linux/ubuntu \
$(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/nlnetlabs.list > /dev/null

Update the apt package index once more:

sudo apt update

You can now install Routinator with:

sudo apt install routinator

After installation Routinator will run immediately as the user
routinator and be configured to start at boot. By default, it will
run the RTR server on port 3323 and the HTTP server on port 8323.
These, and other values can be changed in the configuration
file located in
/etc/routinator/routinator.conf.

You can check the status of Routinator with:

sudo systemctl status routinator

You can view the logs with:

sudo journalctl --unit=routinator

To install a Routinator package, you need Red Hat Enterprise Linux
(RHEL) 7, 8 or 9, or compatible operating system such as Rocky Linux.
Packages are available for the amd64/x86_64 architecture only.

First create a file named /etc/yum.repos.d/nlnetlabs.repo,
enter this configuration and save it:

[nlnetlabs]
name=NLnet Labs
baseurl=https://packages.nlnetlabs.nl/linux/centos/$releasever/main/$basearch
enabled=1

Add the GPG key from NLnet Labs:

sudo rpm --import https://packages.nlnetlabs.nl/aptkey.asc

You can now install Routinator with:

sudo yum install -y routinator

After installation Routinator will run immediately as the user
routinator and be configured to start at boot. By default, it will
run the RTR server on port 3323 and the HTTP server on port 8323.
These, and other values can be changed in the configuration
file located in
/etc/routinator/routinator.conf.

You can check the status of Routinator with:

sudo systemctl status routinator

You can view the logs with:

sudo journalctl --unit=routinator

Routinator Docker images are built with Alpine Linux. The supported
CPU architectures are shown on the Docker Hub Routinator page [https://hub.docker.com/r/nlnetlabs/routinator/tags] per Routinator
version (aka Docker “tag”) in the OS/ARCH column.

To run Routinator as a background daemon with the default settings (RTR
server on port 3323 and HTTP server on port 8323) can be done like so:

sudo docker run -d --restart=unless-stopped --name routinator \
 -p 3323:3323 \
 -p 8323:8323 \
 nlnetlabs/routinator

Tip

If no arguments are supplied the Routinator Docker image
configures Routinator to run in server mode, with
--rtr 3323 and --http 8323.

For backward compatibility with earlier releases it also
configures Routinator with --http 9556, the port
number allocated by the Prometheus project [https://github.com/prometheus/prometheus/wiki/Default-port-allocations]
for Routinator metric publication.

The Routinator container is known to run successfully run under
gVisor [https://gvisor.dev/] for additional isolation.

To adjust the configuration you can pass command line arguments to
Routinator (try --help for more information) and/or supply your
own Routinator configuration file (by mapping it from the host into
the container using -v host/path/to/routinator.conf:/etc/routinator.conf
and passing --config /etc/routinator.conf when running the container).

For example in an IPv6 only network you could invoke Routinator like so to
have it listen on IPv6 as well as IPv4:

sudo docker run <your usual arguments> \
 server --rtr [::]:3323 --http [::]:8323

Note the server command passed to Routinator. When you override the
default arguments passed to Routinator by the Docker image you must provide
all of the arguments required by Routinator. See the Manual Page for
more information.

To persist the RPKI cache data you can create a separate Docker volume
and mount it into the container like so:

sudo docker volume create rpki-cache
sudo docker run <your usual arguments> \
 -v rpki-cache:/home/routinator/.rpki-cache \
 nlnetlabs/routinator

New in version 0.9.0: RPM packages

New in version 0.11.0: Debian packages for armhf and arm64 architecture

New in version 0.11.2: Ubuntu packages for Jammy 22.04 (LTS)

Deprecated since version 0.12.0: routinator-init and --accept-arin-rpa

New in version 0.13.0: Packages for Debian Bookworm 12 and RHEL 9

Updating

DebianUbuntuRHEL/CentOSDocker
To update an existing Routinator installation, first update the
repository using:

sudo apt update

You can use this command to get an overview of the available versions:

sudo apt policy routinator

You can upgrade an existing Routinator installation to the latest
version using:

sudo apt --only-upgrade install routinator

To update an existing Routinator installation, first update the
repository using:

sudo apt update

You can use this command to get an overview of the available versions:

sudo apt policy routinator

You can upgrade an existing Routinator installation to the latest
version using:

sudo apt --only-upgrade install routinator

To update an existing Routinator installation, you can use this
command to get an overview of the available versions:

sudo yum --showduplicates list routinator

You can update to the latest version using:

sudo yum update -y routinator

Assuming that you run Docker with image nlnetlabs/routinator, upgrading
to the latest version can be done by running the following commands:

sudo docker pull nlnetlabs/routinator
sudo docker rm --force routinator
sudo docker run <your usual arguments> nlnetlabs/routinator

Installing Specific Versions

Before every new release of Routinator, one or more release candidates are
provided for testing through every installation method. You can also install
a specific version, if needed.

DebianUbuntuRHEL/CentOSDocker
If you would like to try out release candidates of Routinator you can
add the proposed repository to the existing main repository
described earlier.

Assuming you already have followed the steps to install regular releases,
run this command to add the additional repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-keyring.gpg] https://packages.nlnetlabs.nl/linux/debian \
$(lsb_release -cs)-proposed main" | sudo tee /etc/apt/sources.list.d/nlnetlabs-proposed.list > /dev/null

Make sure to update the apt package index:

sudo apt update

You can now use this command to get an overview of the available
versions:

sudo apt policy routinator

You can install a specific version using <package name>=<version>,
e.g.:

sudo apt install routinator=0.9.0~rc2-1buster

If you would like to try out release candidates of Routinator you can
add the proposed repository to the existing main repository
described earlier.

Assuming you already have followed the steps to install regular
releases, run this command to add the additional repository:

echo \
"deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/nlnetlabs-archive-keyring.gpg] https://packages.nlnetlabs.nl/linux/ubuntu \
$(lsb_release -cs)-proposed main" | sudo tee /etc/apt/sources.list.d/nlnetlabs-proposed.list > /dev/null

Make sure to update the apt package index:

sudo apt update

You can now use this command to get an overview of the available
versions:

sudo apt policy routinator

You can install a specific version using <package name>=<version>,
e.g.:

sudo apt install routinator=0.9.0~rc2-1bionic

To install release candidates of Routinator, create an additional repo
file named /etc/yum.repos.d/nlnetlabs-testing.repo, enter this
configuration and save it:

[nlnetlabs-testing]
name=NLnet Labs Testing
baseurl=https://packages.nlnetlabs.nl/linux/centos/$releasever/proposed/$basearch
enabled=1

You can use this command to get an overview of the available versions:

sudo yum --showduplicates list routinator

You can install a specific version using
<package name>-<version info>, e.g.:

sudo yum install -y routinator-0.9.0~rc2

All release versions of Routinator, as well as release candidates and
builds based on the latest main branch are available on Docker Hub [https://hub.docker.com/r/nlnetlabs/routinator/tags?page=1&ordering=last_updated].

For example, installing Routinator 0.9.0 RC2 is as simple as:

sudo docker run <your usual arguments> nlnetlabs/routinator:v0.9.0-rc2

Building From Source

In addition to meeting the system requirements, there are three things you need to build Routinator: rsync, a
C toolchain and Rust. You can run Routinator on any operating system and CPU
architecture where you can fulfil these requirements.

Dependencies

To get started you need rsync because some RPKI repositories still use it as
its main means of distribution. Some of the cryptographic primitives used by
Routinator require a C toolchain. Lastly, you need Rust because that’s the
programming language that Routinator has been written in.

rsync

Currently, Routinator requires the rsync executable to be in your
path. Due to the nature of rsync, it is unclear which particular version you
need at the very least, but whatever is being shipped with current Linux and
*BSD distributions, as well as macOS should be fine. Alternatively, you can
download rsync from the Samba website [https://rsync.samba.org/].

On Windows, Routinator requires the rsync version that comes with
Cygwin [https://www.cygwin.com/] – make sure to select rsync during the
installation phase.

C Toolchain

Some of the libraries Routinator depends on require a C toolchain to be
present. Your system probably has some easy way to install the minimum set of
packages to build from C sources. For example, this command will install
everything you need on Debian/Ubuntu:

apt install build-essential

If you are unsure, try to run cc on a command line. If there is a
complaint about missing input files, you are probably good to go.

Rust

The Rust compiler runs on, and compiles to, a great number of platforms,
though not all of them are equally supported. The official Rust Platform
Support [https://doc.rust-lang.org/nightly/rustc/platform-support.html] page provides an overview of the various support levels.

While some system distributions include Rust as system packages, Routinator
relies on a relatively new version of Rust, currently 1.70 or newer.
We therefore suggest to use the canonical Rust installation via a tool called
rustup.

Assuming you already have curl installed, you can install
rustup and Rust by simply entering:

curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Alternatively, visit the Rust website [https://www.rust-lang.org/tools/install] for other installation methods.

Building and Updating

In Rust, a library or executable program such as Routinator is called a
crate. Crates are published on crates.io [https://crates.io/crates/routinator], the Rust package registry. Cargo is
the Rust package manager. It is a tool that allows Rust packages to declare
their various dependencies and ensure that you’ll always get a repeatable
build.

Cargo fetches and builds Routinator’s dependencies into an executable binary
for your platform. By default you install from crates.io, but you can for
example also install from a specific Git URL, as explained below.

Installing the latest Routinator release from crates.io is as simple as
running:

cargo install --locked routinator

The command will build Routinator and install it in the same directory that
Cargo itself lives in, likely $HOME/.cargo/bin. This means Routinator
will be in your path, too.

Updating

If you want to update to the latest version of Routinator, it’s recommended
to update Rust itself as well, using:

rustup update

Use the --force option to overwrite an existing version with the latest
Routinator release:

cargo install --locked --force routinator

Installing Specific Versions

If you want to install a specific version of
Routinator using Cargo, explicitly use the --version option. If needed,
use the --force option to overwrite an existing version:

cargo install --locked --force routinator --version 0.9.0-rc2

All new features of Routinator are built on a branch and merged via a pull
request [https://github.com/NLnetLabs/routinator/pulls], allowing you to
easily try them out using Cargo. If you want to try a specific branch from
the repository you can use the --git and --branch options:

cargo install --git https://github.com/NLnetLabs/routinator.git --branch main

See also

For more installation options refer to the Cargo book [https://doc.rust-lang.org/cargo/commands/cargo-install.html#install-options].

Enabling or Disabling Features

When you build Routinator, “features” [https://doc.rust-lang.org/cargo/reference/features.html] provide a
mechanism to express conditional compilation and optional dependencies. The
Routinator package defines a set of named features in the [features]
table of Cargo.toml [https://github.com/NLnetLabs/routinator/blob/main/Cargo.toml]. The table
also defines if a feature is enabled or disabled by default.

Routinator currently has the following features:

	socks — Enabled by default
	Allow the configuration of a SOCKS proxy.

	ui — Enabled by default
	Download and build the the routinator-ui [https://crates.io/crates/routinator-ui] crate to run the user
interface.

	native-tls — Disabled by default
	Use the native TLS implementation of your system instead of rustls [https://github.com/rustls/rustls].

	rta — Disabled by default
	Let Routinator validate Resource Tagged Attestations.

	aspa — Disabled by default
	Let Routinator validate ASPA objects.

Note

ASPA support is temporarily behind a feature flag while the draft is under
discussion in the IETF. This way operators can gain operational experience
without unintended side effects.

To disable the features that are enabled by default, use the
--no-default-features option. You can then choose which features you want
using the --features option, listing each feature separated by commas.

For example, if you want to build Routinator without the user interface, make
sure SOCKS support is retained and use the native TLS implementation, enter
the following command:

cargo install --locked --no-default-features --features socks,native-tls routinator

If you want to enable a specific feature in the container, this is done via
Docker build args, e.g.

docker build . --build-arg CARGO_ARGS="--features native-tls"

Statically Linked Routinator

While Rust binaries are mostly statically linked, they depend on
libc which, as least as glibc that is standard on Linux
systems, is somewhat difficult to link statically. This is why Routinator
binaries are actually dynamically linked on glibc systems and can
only be transferred between systems with the same glibc versions.

However, Rust can build binaries based on the alternative implementation
named musl that can easily be statically linked. Building such
binaries is easy with rustup. You need to install musl
and the correct musl target such as x86_64-unknown-linux-musl
for x86_64 Linux systems. Then you can just build Routinator for that
target.

On a Debian (and presumably Ubuntu) system, enter the following:

sudo apt-get install musl-tools
rustup target add x86_64-unknown-linux-musl
cargo build --target=x86_64-unknown-linux-musl --release

Platform Specific Instructions

Tip

GÉANT has created an
Ansible playbook [https://github.com/GEANT/rpki-validation-tools]
defining a role to deploy Routinator on Ubuntu.

For some platforms, rustup cannot provide binary releases to
install directly. The Rust Platform Support [https://doc.rust-lang.org/nightly/rustc/platform-support.html] page lists
several platforms where official binary releases are not available, but Rust
is still guaranteed to build. For these platforms, automated tests are not
run so it’s not guaranteed to produce a working build, but they often work to
quite a good degree.

OpenBSD

On OpenBSD, patches [https://github.com/openbsd/ports/tree/master/lang/rust/patches] are
required to get Rust running correctly, but these are well maintained and
offer the latest version of Rust quite quickly.

Rust can be installed on OpenBSD by running:

pkg_add rust

CentOS 6

The standard installation method does not work when using CentOS 6. Here, you
will end up with a long list of error messages about missing assembler
instructions. This is because the assembler shipped with CentOS 6 is too old.

You can get the necessary version by installing the Developer Toolset 6 [https://www.softwarecollections.org/en/scls/rhscl/devtoolset-6/] from the
Software Collections [https://wiki.centos.org/AdditionalResources/Repositories/SCL] repository.
On a virgin system, you can install Rust using these steps:

sudo yum install centos-release-scl
sudo yum install devtoolset-6
scl enable devtoolset-6 bash
curl https://sh.rustup.rs -sSf | sh
source $HOME/.cargo/env

SELinux using CentOS 7

This guide, contributed by Rich Compton [https://github.com/racompton/routinator_centos7_install], describes how to
run Routinator on Security Enhanced Linux (SELinux) using CentOS 7.

	Start by setting the hostname:

sudo nmtui-hostname

	Set the interface and connect it:

Note

Ensure that “Automatically connect” and “Available to all users”
are checked.

sudo nmtui-edit

	Install the required packages:

sudo yum check-update
sudo yum upgrade -y
sudo yum install -y epel-release
sudo yum install -y vim wget curl net-tools lsof bash-completion yum-utils \
 htop nginx httpd-tools tcpdump rust cargo rsync policycoreutils-python

	Set the timezone to UTC:

sudo timedatectl set-timezone UTC

	Remove postfix as it is unneeded:

sudo systemctl stop postfix
sudo systemctl disable postfix

	Create a self-signed certificate for NGINX:

sudo mkdir /etc/ssl/private
sudo chmod 700 /etc/ssl/private
sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
 -keyout /etc/ssl/private/nginx-selfsigned.key \
 -out /etc/ssl/certs/nginx-selfsigned.crt
Populate the relevant information to generate a self signed certificate
sudo openssl dhparam -out /etc/ssl/certs/dhparam.pem 2048

	Add in the ssl.conf file to /etc/nginx/conf.d/ssl.conf
and edit the ssl.conf file to provide the IP of the host in the
server_name field.

	Replace /etc/nginx/nginx.conf with the nginx.conf file.

	Set the username and password for the web interface authentication:

sudo htpasswd -c /etc/nginx/.htpasswd <username>

	Start Nginx and set it up so it starts at boot:

sudo systemctl start nginx
sudo systemctl enable nginx

	Add the user routinator, create the /opt/routinator directory
and assign it to the routinator user and group:

sudo useradd routinator
sudo mkdir /opt/routinator
sudo chown routinator:routinator /opt/routinator

	Sudo into the routinator user:

sudo su - routinator

	Install Routinator and add it to the $PATH for user routinator:

cargo install --locked routinator
vi /home/routinator/.bash_profile
Edit the PATH line to include "/home/routinator/.cargo/bin"
PATH=$PATH:$HOME/.local/bin:$HOME/bin:/home/routinator/.cargo/bin

	Create a routinator systemd script using the template below:

sudo vi /etc/systemd/system/routinator.service
[Unit]
Description=Routinator RPKI Validator and RTR Server
After=network.target
[Service]
Type=simple
User=routinator
Group=routinator
Restart=on-failure
RestartSec=90
ExecStart=/home/routinator/.cargo/bin/routinator -v -b /opt/routinator server \
 --http 127.0.0.1:8080 --rtr <IPv4 IP>:8323 --rtr [<IPv6 IP>]:8323
TimeoutStartSec=0
[Install]
WantedBy=default.target

Note

You must populate the IPv4 and IPv6 addresses. In addition, the IPv6
address needs to have brackets ‘[]’ around it. For example:

/home/routinator/.cargo/bin/routinator -v -b /opt/routinator server \
--http 127.0.0.1:8080 --rtr 172.16.47.235:8323 --rtr [2001:db8::43]:8323

	Configure SELinux to allow connections to localhost and to allow
rsync to write to the /opt/routinator directory:

sudo setsebool -P httpd_can_network_connect 1
sudo semanage permissive -a rsync_t

	Reload the systemd daemon and set the routinator service to start at
boot:

sudo systemctl daemon-reload
sudo systemctl enable routinator.service
sudo systemctl start routinator.service

	Set up the firewall to permit ssh, HTTPS and port 8323 for the
RTR protocol:

sudo firewall-cmd --permanent --remove-service=ssh --zone=public
sudo firewall-cmd --permanent --zone public --add-rich-rule='rule family="ipv4" \
 source address="<IPv4 management subnet>" service name=ssh accept'
sudo firewall-cmd --permanent --zone public --add-rich-rule='rule family="ipv6" \
 source address="<IPv6 management subnet>" service name=ssh accept'
sudo firewall-cmd --permanent --zone public --add-rich-rule='rule family="ipv4" \
 source address="<IPv4 management subnet>" service name=https accept'
sudo firewall-cmd --permanent --zone public --add-rich-rule='rule family="ipv6" \
 source address="<IPv6 management subnet>" service name=https accept'
sudo firewall-cmd --permanent --zone public --add-rich-rule='rule family="ipv4" \
 source address="<peering router IPv4 loopback subnet>" port port=8323 protocol=tcp accept'
sudo firewall-cmd --permanent --zone public --add-rich-rule='rule family="ipv6" \
 source address="<peering router IPv6 loopback subnet>" port port=8323 protocol=tcp accept'
sudo firewall-cmd --reload

	Navigate to https://<IP-address>/metrics to see if it’s
working. You should authenticate with the username and password that you
provided in step 10 of setting up the RPKI Validation Server.

Important

With Routinator 0.12.0 and newer, initialisation to accept
the ARIN Relying Party Agreement (RPA) is no longer
required. The RPA has been updated [https://www.arin.net/announcements/20220929/] to allow the
ARIN TAL to be embedded in Relying Party software. By
default, Routinator is now set up to fetch and validate all
RPKI data needed for production environments.

Configuration

Routinator has a large number of configuration options, but in most cases
running it with the defaults will work just fine. You can specify options as
command line arguments, but you can also use a
configuration file.

Routinator uses the TOML format [https://github.com/toml-lang/toml] for
specifying options in the configuration file. Its entries are named similarly
to the command line options. A complete sample configuration file showing all
the default values can be found in the repository [https://github.com/NLnetLabs/routinator/blob/master/etc/routinator.conf.example].

Routinator can run as a daemon but you can also use it interactively from the
command line. There are several considerations with regards to how you’ve
installed and how you intend to use Routinator, which we’ll cover below.

Setup When Installed From a Package

The installation script will set up Routinator to run as the user
routinator and be configured to start at boot. Routinator will use the
configuration file /etc/routinator/routinator.conf which contains the
following pre-configured options:

repository-dir = "/var/lib/routinator/rpki-cache"
rtr-listen = ["127.0.0.1:3323"]
http-listen = ["127.0.0.1:8323"]

For security reasons the HTTP and RTR server will only listen on localhost,
so you will have to change these values to make them accessible to other
devices on your network.

The service script that starts Routinator uses the --config option
to explicitly refer to this configuration file, so any desired changes should
be made here. If you would like to know what default settings Routinator runs
with in addition to the settings in the config file, you can check with the
config subcommand:

routinator --config /etc/routinator/routinator.conf config

This output will also provide you with the correct syntax in case you want to
make changes.

Important

Once you have started Routinator as a system service you
should not invoke interactive validation
runs from the command line using routinator vrps. If there
is specific information you would like to have from
Routinator, you should retrieve it via the
user interface or one of the
HTTP endpoints.

Setup When Built with Cargo

If you have built Routinator using Cargo, you have made your own decisions
with regards to the user that it runs as and the privileges it has. There is
no default configuration file, as it is your choice if you want to use one.

If you run Routinator without referring to a configuration file it will check
if the file $HOME/.routinator.conf exists and if it does, use it.
If no configuration file is available, the default values are used.

You can specify the location of the RPKI cache directory using the
--repository-dir option. If you don’t, one will be created in the
default location $HOME/.rpki-cache/repository. The HTTP
service and RTR service must be started
explicitly using the command line options --http and
--rtr, respectively, or via the configuration file.

You can view the default settings Routinator runs with using:

routinator config

It will return the list of defaults in the same notation that is used by the
configuration file, which will be
largely similar to this and can serve as a starting point for making your
own:

allow-dubious-hosts = false
dirty = false
disable-rrdp = false
disable-rsync = false
enable-aspa = false
enable-bgpsec = false
exceptions = []
expire = 7200
history-size = 10
http-listen = []
http-tls-listen = []
log = "default"
log-level = "WARN"
max-ca-depth = 32
max-object-size = 20000000
refresh = 600
repository-dir = "/Users/routinator/.rpki-cache/repository"
retry = 600
rrdp-fallback-time = 3600
rrdp-max-delta-count = 100
rrdp-proxies = []
rrdp-root-certs = []
rrdp-timeout = 300
rsync-command = "rsync"
rsync-timeout = 300
rtr-client-metrics = false
rtr-listen = []
rtr-tcp-keepalive = 60
rtr-tls-listen = []
stale = "reject"
strict = false
syslog-facility = "daemon"
systemd-listen = false
unknown-objects = "warn"
unsafe-vrps = "accept"
validation-threads = 10

Trust Anchor Locators

Fetching data is done by connecting to the Trust Anchor Locators
(TALs) of the five Regional Internet Registries
(RIRs): AFRINIC, APNIC, ARIN, LACNIC and RIPE NCC. TALs provide hints for
the trust anchor certificates to be used both to discover and validate all
RPKI content. By default, Routinator will be set up for use in production
environments and run with the production TALs of the five RIRs.

Some RIRs and third parties also provide separate TALs for testing purposes,
allowing operators to gain experience with using RPKI in a safe environment.
Both the production and testbed TALs are bundled with Routinator and can be
enabled and disabled using command line and configuration file options.

Run the following command to list all available TALs:

routinator --tal=list

This displays the following overview:

.---- RIR TALs
| .- RIR test TALs
V V

X afrinic AFRINIC production TAL
X apnic APNIC production TAL
X arin ARIN production TAL
X lacnic LACNIC production TAL
X ripe RIPE production TAL
 X apnic-testbed APNIC RPKI Testbed
 X arin-ote ARIN Operational Test and Evaluation Environment
 X ripe-pilot RIPE NCC RPKI Test Environment
 nlnetlabs-testbed NLnet Labs RPKI Testbed

You can influence which TALs Routinator uses with the --tal option,
which can be combined with the --no-rir-tals option to leave out
all RIR production TALs, as well as the --extra-tals-dir option to
specify a directory containing extra TALs to use.

For example, if you want to add the RIPE NCC RPKI Test Environment to the
default TAL set, run:

routinator --tal=ripe-pilot

If you want to run Routinator without any of the production TALs and only
fetch data from the ARIN Operational Test and Evaluation Environment, run:

routinator --no-rir-tals --tal=arin-ote

Lastly, if you would like to use a TAL that isn’t bundled with Routinator you
can place it in a directory of your choice, for example
/var/lib/routinator/tals, and refer to it by running:

routinator --extra-tals-dir="/var/lib/routinator/tals"

Routinator will use all files in this directory with an extension of .tal
as TALs. These files need to be in the format described by RFC 8630 [https://datatracker.ietf.org/doc/html/rfc8630.html]. Note
that Routinator will use all TALs provided. That means that if a TAL in this
directory is one of the bundled TALs, then these resources will be validated
twice.

New in version 0.9.0: --list-tals, --rir-tals, --rir-test-tals,
--tal and --skip-tal

Deprecated since version 0.9.0: --decline-arin-rpa, use --skip-tal instead

New in version 0.12.0: --extra-tals-dir

Deprecated since version 0.12.0: The init subcommand, --list-tals

Using Tmpfs for the RPKI Cache

The full RPKI data set consists of hundreds of thousands of small files. This
causes a considerable amount of disk I/O with each validation run. If this is
undesirable in your setup, you can choose to store the cache in volatile
memory using the tmpfs file system [https://www.kernel.org/doc/html/latest/filesystems/tmpfs.html].

If you have installed Routinator using a package, by default the RPKI cache
directory will be /var/lib/routinator/rpki-cache, so we’ll use that
as an example. Note that the directory you choose must exist before the mount
can be done. You should allocate at least 3GB for the cache, but giving it
4GB will allow ample margin for future growth. Lastly, tmpfs will behave
just like a regular disk, so the same considerations apply to inode
usage:

sudo mount -t tmpfs -o size=4G -o nr_inodes=2M tmpfs /var/lib/routinator/rpki-cache

Tmpfs will behave just like a regular disk, so if it runs out of space
Routinator will do a clean crash, stopping validation, the API, HTTP server
and most importantly the RTR server, ensuring that no stale data will be
served to your routers.

Also keep in mind that every time you restart the machine, the contents of
the tmpfs file system will be lost. This means that Routinator will have to
rebuild its cache from scratch. This is not a problem, other than it having
to download several hundred megabytes of data, which usually takes about ten
minutes to complete. During this time all services will be unavailable.

Note that your routers should be configured to have a secondary relying party
instance available at all times.

Verifying Configuration

You should verify if Routinator has been configured correctly and your
firewall allows the required outbound connections on ports 443 and 873. From
a cold start, it will take ten to fifteen minutes to do the first validation
run that builds up the validated cache. Subsequent runs will be much faster,
because only the changes between the repositories and the validated cache
need to be processed.

If you have installed Routinator from a package and run it as a service, you
can check the status using:

sudo systemctl status routinator

And check the logs using:

sudo journalctl --unit=routinator

Important

Because it is expected that the state of the entire RPKI is not
perfect at all times, you may see several warnings about objects
that are either stale or failed cryptographic verification, or
repositories that are temporarily unavailable.

If you have built Routinator using Cargo it is recommended to perform an
initial test run. You can do this by having Routinator print a validated ROA
payload (VRP) list with the vrps subcommand, and using -v
twice to increase the log level to debug:

routinator -vv vrps

Now, you can see how Routinator connects to the RPKI trust anchors, downloads
the the contents of the repositories to your machine, verifies it and
produces a list of VRPs in the default CSV format to standard output.

[INFO] Using the following TALs:
[INFO] * afrinic
[INFO] * apnic
[INFO] * arin
[INFO] * lacnic
[INFO] * ripe
[DEBUG] Found valid trust anchor https://rpki.ripe.net/ta/ripe-ncc-ta.cer. Processing.
[DEBUG] Found valid trust anchor https://rrdp.lacnic.net/ta/rta-lacnic-rpki.cer. Processing.
[DEBUG] Found valid trust anchor https://rpki.afrinic.net/repository/AfriNIC.cer. Processing.
[DEBUG] Found valid trust anchor https://rpki.apnic.net/repository/apnic-rpki-root-iana-origin.cer. Processing.
[DEBUG] Found valid trust anchor https://rrdp.arin.net/arin-rpki-ta.cer. Processing.
[DEBUG] RRDP https://rrdp.ripe.net/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rrdp.lacnic.net/rrdp/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rrdp.apnic.net/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rrdp.afrinic.net/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rrdp.arin.net/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rrdp.apnic.net/notification.xml: snapshot update completed.
[DEBUG] RRDP https://rpki-rrdp.us-east-2.amazonaws.com/rrdp/08c2f264-23f9-49fb-9d43-f8b50bec9261/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rpki-rrdp.us-east-2.amazonaws.com/rrdp/08c2f264-23f9-49fb-9d43-f8b50bec9261/notification.xml: snapshot update completed.
[DEBUG] RRDP https://rpki.akrn.net/rrdp/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rpki.akrn.net/rrdp/notification.xml: snapshot update completed.
[DEBUG] RRDP https://rpki.admin.freerangecloud.com/rrdp/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rpki.admin.freerangecloud.com/rrdp/notification.xml: snapshot update completed.
[DEBUG] RRDP https://rpki.cnnic.cn/rrdp/notify.xml: updating from snapshot.
[DEBUG] RRDP https://rrdp.ripe.net/notification.xml: snapshot update completed.
[DEBUG] RRDP https://0.sb/rrdp/notification.xml: updating from snapshot.
[DEBUG] RRDP https://0.sb/rrdp/notification.xml: snapshot update completed.
[DEBUG] RRDP https://rrdp.sub.apnic.net/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rrdp.sub.apnic.net/notification.xml: snapshot update completed.
[DEBUG] RRDP https://rpki.roa.net/rrdp/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rpki.roa.net/rrdp/notification.xml: snapshot update completed.
[DEBUG] RRDP https://rrdp.rp.ki/notification.xml: updating from snapshot.
[DEBUG] RRDP https://rpki.cnnic.cn/rrdp/notify.xml: snapshot update completed.
...
ASN,IP Prefix,Max Length,Trust Anchor
AS137884,103.116.116.0/23,23,apnic
AS9003,91.151.112.0/20,20,ripe
AS38553,120.72.19.0/24,24,apnic
AS58045,37.209.242.0/24,24,ripe
AS9583,202.177.175.0/24,24,apnic
AS50629,2a0f:ba80::/29,29,ripe
AS398085,2602:801:a008::/48,48,arin
AS21050,83.96.22.0/24,24,ripe
AS55577,183.82.223.0/24,24,apnic
AS44444,157.167.73.0/24,24,ripe
AS197695,194.67.97.0/24,24,ripe
...

Data Processing

Fetching

There are two protocols in use to transport RPKI data: rsync and the RPKI
Repository Delta Protocol (RRDP), which relies on HTTPS. RRDP was designed to
be the successor to rsync in the RPKI. As all RPKI repositories currently
advertise support for both protocols, Routinator will prefer RRDP if
available.

In the RPKI, the certificate hierarchy follows the same structure as the
Internet number resource allocation hierarchy. Routinator starts traversing the
tree by connecting to the trust anchors of the
Regional Internet Registries (RIRs). Along the way Routinator will find several
pointers to child publication points, such as the
ones operated by National Internet Registries (NIRs), Local Internet Registries
(LIRs) and organisations running delegated RPKI. Each pointer explicitly states
if RRDP is offered in addition to rsync.

[image: The RPKI hierarchy]
The RPKI hierarchy

As a precaution, Routinator will not accept rsync and HTTPS URIs from
RPKI repositories with dubious hostnames. In particular, it
will reject the name localhost, URIs that consist of IP addresses, and
hostnames that contain an explicit port. You can change this behaviour with the
--allow-dubious-hosts option.

RRDP Fallback

If an RRDP endpoint is unavailable but it has worked in the past, Routinator
will assume this is a transient problem. What action is taken is determined
by the --rrdp-fallback option. The default policy is stale. This
means Routinator will retry using RRDP for up to 60 minutes since the last
successful update, during which it will rely on the locally cached data for
this repository. After this time, Routinator will try to use rsync to fetch
the data instead. To spread out load on the rsync server, the exact moment
fallback happens is picked randomly between the refresh time and the
--rrdp-fallback-time value. If rsync communication is unsuccessful
too, the local cache is used until the objects go stale and ultimately
expire.

Another policy for --rrdp-fallback is never. This means that
rsync is never tried for a CA that advertises the availability of RRDP.
Lastly, the policy new means that rsync is tried if an update via RRDP
fails and there is no local copy of the RRDP repository at all. In other
words, an update via RRDP has never succeeded for the repository. Choosing
this policy allows a repository operator some leeway when first enabling RRDP
support.

New in version 0.9.0.

Changed in version 0.12.0: The --rrdp-fallback option

Update Interval

Routinator will fetch new RPKI data ten minutes after the last successful update
has finished. The interval can be changed using the --refresh option.
It is possible that it takes very long to update a repository due to
temporary network problems. To ensure a slow repository doesn’t stop the entire
update process from completing, Routinator has a timeout for stalled
connections. For RRDP, this timeout is implemented as an HTTP request timeout.
For rsync, the timeout is around the spawned rsync process. The default is five
minutes for both and can be changed via the --rsync-timeout and
--rrdp-timeout options.

Validating

The validation process determines if all certificates, Route Origin Attestations
(ROAs) and other signed objects that may appear in the RPKI have the correct
signatures. It will also verify if the hashes are correct, no objects have
expired and the entire data set is complete. If any of the objects do not pass
these checks, the data will be discarded.

Currently, only certificates (.cer), certificate revocation lists (.crl),
manifests (.mft), ROAs (.roa), and Ghostbuster Records (.gbr) are allowed to
appear the RPKI. If another type of object is encountered Routinator will warn
by default, but this can be changed with the --unknown-objects option.

Note that even if unknown objects are accepted, they must appear in the manifest
and the hash over their content must match the one given in the manifest. If the
hash does not match, the Certificate Authority (CA) and all its objects are
still rejected.

Stale Objects

During the validation process, Routinator may encounter objects that are
stale. In RPKI, manifests and CRLs can
be stale if the time given in their next-update field is in the past,
indicating that an update to the object was scheduled but didn’t happen. This
can be because of an operational issue at the issuer or an attacker trying to
replay old objects.

Ongoing standards efforts and operational experiences suggest that stale objects
should be rejected, which is the default policy set by the --stale
option since Routinator 0.8.0. As a result, all material published by the CA
issuing this manifest and CRL is considered invalid, including all material of
any child CA.

ROAs and VRPs

ROAs are cryptographic objects that contain a statement authorising a single
Autonomous System Number (ASN) to originate one or more IP prefixes, along
with their maximum prefix length. ROAs can only be created by the legitimate
holder of the IP prefixes contained within it, but they can authorise any ASN.

If the ROA passes validation, Routinator will produce one or more plain text
validated ROA payloads (VRPs) for each ROA, depending on how many IP prefixes
are contained within it. Each VRP is a tuple of an ASN, a single prefix and its
maximum prefix length. The complete collection of VRPs can be expressed in
formats such as CSV or JSON, or exposed via the RPKI-to-Router (RTR) protocol so
that they can be compared to all BGP origins seen by your routers. For each
route origin it can be determined if they are RPKI “Valid”, “Invalid” or
“NotFound”.

Unsafe VRPs

If the address prefix of a VRP overlaps with any resources assigned to a CA that
has been rejected because it failed to validate completely, the VRP is said to
be unsafe since using it may lead to legitimate routes being flagged as RPKI
Invalid.

Routinator has an --unsafe-vrps option that specifies how to deal with
these types of VRPs. Currently, the default policy is warn in order to gain
operational experience with the frequency and impact of unsafe VRPs. This
default may change in future version.

You can learn more about this topic in the Unsafe VRPs section.

Storing

To be resistant against accidental or malicious errors in the data published by
repositories, Routinator retains two separate data sets: one that keeps the data
of all publication points as it was received from their remote repository, and
another – which we call the store – keeps the most recent data of a given RPKI
publication point that was found to be correctly published.

Data is only transferred into the store if a manifest was found to be valid and
if all files mentioned on the manifest are present and have the correct hash.
Otherwise the data for the publication point already present in the store will
be used for validation.

If you ever want or need to clear all stored data, you can use the
--fresh option. This will be like starting Routinator for the very
first time:

routinator --fresh vrps

New in version 0.9.0.

VRP Output Formats

Routinator can perform RPKI validation as a one-time operation or run as a
daemon. In both operating modes validated ROA payloads (VRPs) can be
generated in a wide range of output formats for various use cases.

Tip

In many of the output formats, the name of the trust anchor from
where the VRP originated is provided. This name is derived from the
file name of the TAL, without the .tal extension. If you would
like a different name, the tal-label option in the
configuration file lets you create a mapping
between the file name and your desired label.

	csv
	The list is formatted as lines of comma-separated values of the
following items:

	The prefix in slash notation,

	the maximum prefix length,

	the Autonomous System Number, and

	the name of the trust anchor the entry is derived from.

ASN,IP Prefix,Max Length,Trust Anchor
AS196615,2001:7fb:fd03::/48,48,ripe
AS196615,2001:7fb:fd04::/48,48,ripe
AS196615,93.175.147.0/24,24,ripe

	csvcompat
	This is the same as the csv format except that all fields are
embedded in double quotes and the Autonomous System Number is given
without the prefix AS. This format is pretty much identical to
the CSV format produced by the RIPE NCC RPKI Validator.

"ASN","IP Prefix","Max Length","Trust Anchor"
"196615","2001:7fb:fd03::/48","48","ripe"
"196615","2001:7fb:fd04::/48","48","ripe"
"196615","93.175.147.0/24","24","ripe"

	csvext
	This is an extended version of the csv format, which was used by
the RIPE NCC RPKI Validator 1.x. Each line contains these
comma-separated values:

	The rsync URI of the ROA the line is taken from (or “N/A” if it
isn’t from a ROA),

	the Autonomous System Number,

	the prefix in slash notation,

	the maximum prefix length, and

	the not-before and not-after date of the validity of the ROA.

Note

This format is available for backwards compatibility
reasons only. One particular limitation is that it does
not consider duplicate ROAs. Please use jsonext
as a comprehensive output format.

URI,ASN,IP Prefix,Max Length,Not Before,Not After
rsync://rpki.ripe.net/repository/DEFAULT/73/fe2d72-c2dd-46c1-9429-e66369649411/1/49sMtcwyAuAW2lVDSQBGhOHd9og.roa,AS196615,2001:7fb:fd03::/48,48,2021-05-03 14:51:30,2022-07-01 00:00:00
rsync://rpki.ripe.net/repository/DEFAULT/73/fe2d72-c2dd-46c1-9429-e66369649411/1/49sMtcwyAuAW2lVDSQBGhOHd9og.roa,AS196615,2001:7fb:fd04::/48,48,2021-05-03 14:51:30,2022-07-01 00:00:00
rsync://rpki.ripe.net/repository/DEFAULT/73/fe2d72-c2dd-46c1-9429-e66369649411/1/49sMtcwyAuAW2lVDSQBGhOHd9og.roa,AS196615,93.175.147.0/24,24,2021-05-03 14:51:30,2022-07-01 00:00:00

	json
	The list is placed into a JSON object with up to four members:

	roas contains the validated route origin authorisations,

	routerKeys contains the validated
BGPsec router keys,

	aspas contains the validated ASPA
payload, and

	metadata contains some information about the validation run
itself.

Of the first three, only those members are present that have not
been disabled or excluded.

The roas member contains an array of objects with four elements
each:

	asn lists the Autonomous System Number of the network
authorised to originate a prefix,

	prefix has the prefix in slash notation,

	maxLength states the maximum prefix length of the announced
route, and

	ta has the trust anchor from which the authorisation was
derived.

The routerKeys member contains an array of objects with four
elements each:

	asn contains the autonomous system using the router key,

	SKI lists the key identifier as a string of hexadecimal
digits,

	routerPublicKey contains the actual public key as a Base 64
encoded string, and

	ta has the trust anchor from which the authorisation was
derived.

The aspa member contains an array of objects with four members
each:

	customer contains the customer ASN,

	afi lists the address family as either “ipv4” or “ipv6”,

	providers contains the provider ASN set as an array, and

	ta has the trust anchor from which the authorisation was
derived.

The output object also includes a member named metadata which
provides additional information. Currently, this is a member
generated which provides the time the list was generated as a
Unix timestamp, and a member generatedTime which provides the
same time but in the standard ISO date format.

{
 "metadata": {
 "generated": 1685455841,
 "generatedTime": "2023-05-30T14:10:41Z"
 },
 "roas": [{
 "asn": "AS196615",
 "prefix": "93.175.147.0/24",
 "maxLength": 24,
 "ta": "ripe"
 }
],
 "routerKeys": [{
 "asn": "AS211321",
 "SKI": "17316903F0671229E8808BA8E8AB0105FA915A07",
 "routerPublicKey": "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAET10FMBxP6P3r6aG_ICpfsktp7X6ylJIY8Kye6zkQhNOt0y-cRzYngH8MGzY3cXNvZ64z4CpZ22gf4teybGq8ow",
 "ta": "ripe"
 }],
 "aspas": [{
 "customer": "AS64496",
 "afi": "ipv6",
 "providers": ["AS64499", "AS64511", "AS65551"],
 "ta": "ripe"
 }]
}

Changed in version 0.10.0: Add the metadata member

Changed in version 0.13.0: Add the routerKeys and aspas members

	jsonext
	The list is placed into a JSON object with up to four members:

	roas contains the validated route origin authorisations,

	routerKeys contains the validated
BGPsec router keys,

	aspas contains the validated ASPA
objects, and

	metadata contains some information about the validation run
itself.

Of the first three, only those members are present that have not
been disabled or excluded.

The roas member contains an array of objects with four elements
each:

	asn lists the Autonomous System Number of the network
authorised to originate a prefix,

	prefix has the prefix in slash notation,

	maxLength states the maximum prefix length of the announced
route, and

	source contains information about the source of the
authorisation.

The routerKeys member contains an array of objects with
four elements each:

	asn lists the autonomous system using the router key,

	SKI has the key identifier as a string of hexadecimal digits,

	routerPublicKey has the actual public key as a Base 64
encoded string, and

	source contains extended information about the source of the
key.

The aspas member contains an array of objects with
four elements each:

	customer contains the customer ASN,

	afi specifies the address family as either “ipv4” or “ipv6”,

	providers contains the provider ASN set as an array, and

	source contains information about the source of the
authorisation.

This source information the same for route origins, router keys and
aspas. It consists of an array. Each item in that array is an
object providing details of a source. The object will have a type
of roa if it was derived from a valid ROA object, cer if it was
derived from a published router certificate, aspa if it was
derived from an ASPA object, or exception if it was an assertion
in a local exception file.

For RPKI objects, tal provides the name of the trust anchor
locator the object was published under, uri provides the rsync
URI of the ROA or router certificate, validity provides the
validity of the ROA itself, chainValidity the validity
considering the validity of the certificates along the validation
chain, and stale the time when any of the publication points along
the validation chain becomes stale.

For assertions from local exceptions, path will provide the path
of the local exceptions file and, optionally, comment will
provide the comment if given for the assertion.

The output object also includes a member named metadata which
provides additional information. Currently, this is a member
generated which provides the time the list was generated as a
Unix timestamp, and a member generatedTime which provides the
same time but in the standard ISO date format.

Please note that because of this additional information, output in
jsonext format will be quite large.

{
 "metadata": {
 "generated": 1658818561,
 "generatedTime": "2022-07-26T06:56:01Z"
 },
 "roas": [{
 "asn": "AS211321",
 "prefix": "185.49.142.0/24",
 "maxLength": 24,
 "source": [{
 "type": "roa",
 "tal": "ripe",
 "uri": "rsync://testbed.krill.cloud/repo/local-testbed-child/0/3138352e34392e3134322e302f32342d3234203d3e20323131333231.roa",
 "validity": {
 "notBefore": "2022-07-25T20:47:37Z",
 "notAfter": "2023-07-24T20:52:37Z"
 },
 "chainValidity": {
 "notBefore": "2022-07-25T20:47:37Z",
 "notAfter": "2022-07-26T00:00:00Z"
 },
 "stale": "2022-07-26T00:00:00Z"
 }]
 }
],
 "routerKeys": [{
 "asn": "AS211321",
 "SKI": "17316903F0671229E8808BA8E8AB0105FA915A07",
 "routerPublicKey": "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAET10FMBxP6P3r6aG_ICpfsktp7X6ylJIY8Kye6zkQhNOt0y-cRzYngH8MGzY3cXNvZ64z4CpZ22gf4teybGq8ow",
 "source": [{
 "type": "cer",
 "tal": "ripe",
 "uri": "rsync://testbed.krill.cloud/repo/local-testbed-child/0/ROUTER-00033979-17316903F0671229E8808BA8E8AB0105FA915A07.cer",
 "validity": {
 "notBefore": "2022-07-25T20:47:37Z",
 "notAfter": "2023-07-24T20:52:37Z"
 },
 "chainValidity": {
 "notBefore": "2022-07-25T20:47:37Z",
 "notAfter": "2022-07-26T00:00:00Z"
 },
 "stale": "2022-07-26T00:00:00Z"
 }]
 }],
 "aspas": [{
 "customer": "AS64496",
 "afi": "ipv6",
 "providers": ["AS64499", "AS64511", "AS65551"],
 "source": [{
 "type": "aspa",
 "uri": "rsync://acmecorp.example.net/0/AS64496.asa",
 "tal": "ripe",
 "validity": {
 "notBefore": "2023-04-13T07:21:24Z",
 "notAfter": "2024-04-11T07:26:24Z"
 },
 "chainValidity": {
 "notBefore": "2023-04-18T14:32:13Z",
 "notAfter": "2023-04-20T00:00:00Z"
 },
 "stale": "2022-07-26T00:00:00Z"
 }]
 }]
}

New in version 0.9.0.

Changed in version 0.10.0: Add metadata

Changed in version 0.11.0: Add BGPsec information

Changed in version 0.13.0: Add ASPA information

Changed in version 0.13.0: Only include members that have not been disabled or excluded

	slurm
	The list is formatted as locally added assertions of a local
exceptions file defined by RFC 8416 [https://datatracker.ietf.org/doc/html/rfc8416.html] (also
known as SLURM). The produced file will have empty validation
output filters.

{
 "slurmVersion": 1,
 "validationOutputFilters": {
 "prefixFilters": [],
 "bgpsecFilters": []
 },
 "locallyAddedAssertions": {
 "prefixAssertions": [
 {
 "asn": 196615,
 "prefix": "93.175.147.0/24",
 "maxPrefixLength": 24,
 "comment": "ripe"
 },
 {
 "asn": 196615,
 "prefix": "2001:7fb:fd03::/48",
 "maxPrefixLength": 48,
 "comment": "ripe"
 },
 {
 "asn": 196615,
 "prefix": "2001:7fb:fd04::/48",
 "maxPrefixLength": 48,
 "comment": "ripe"
 }
],
 "bgpsecAssertions": [

]
 }
}

New in version 0.11.0.

	openbgpd
	Choosing this format causes Routinator to produce a roa-set
configuration item for the OpenBGPD configuration.

roa-set {
 2001:7fb:fd03::/48 source-as 196615
 2001:7fb:fd04::/48 source-as 196615
 93.175.147.0/24 source-as 196615
}

	bird1
	Choosing this format causes Routinator to produce a ROA table
configuration item for use with BIRD 1.6.

roa 2001:7fb:fd03::/48 max 48 as 196615;
roa 2001:7fb:fd04::/48 max 48 as 196615;
roa 93.175.147.0/24 max 24 as 196615;

	bird2
	Choosing this format causes Routinator to produce a route table
configuration item for BIRD 2.0 configuration.

route 2001:7fb:fd03::/48 max 48 as 196615;
route 2001:7fb:fd04::/48 max 48 as 196615;
route 93.175.147.0/24 max 24 as 196615;

	rpsl
	This format produces a list of RPSL objects with the authorisation in the
fields route, origin, and source. In addition, the fields
descr, mnt-by, created, and last-modified, are present with
more or less meaningful values.

route: 93.175.147.0/24
origin: AS196615
descr: RPKI attestation
mnt-by: NA
created: 2021-05-07T14:28:17Z
last-modified: 2021-05-07T14:28:17Z
source: ROA-RIPE-RPKI-ROOT

	summary
	This format produces a summary of the content of the RPKI
repository. It does not take filters into account and will always
provide numbers for the complete repository.

For each trust anchor, it will print the number of verified ROAs
and VRPs, router certificates and keys, as well as ASPAs. Note that
router keys and ASPAs will only be included in the totals if you
have enabled BGPsec and
ASPA, respectively.

Summary at 2023-05-30 16:22:27.060940 UTC
afrinic:
 ROAs: 4896 verified;
 VRPs: 6248 verified, 5956 final;
 router certs: 0 verified;
 router keys: 0 verified, 0 final;
 ASPAs: 0 verified, 0 final;
apnic:
 ROAs: 25231 verified;
 VRPs: 109978 verified, 109717 final;
 router certs: 0 verified;
 router keys: 0 verified, 0 final;
 ASPAs: 2 verified, 2 final;
arin:
 ROAs: 63188 verified;
 VRPs: 78064 verified, 76941 final;
 router certs: 1 verified;
 router keys: 1 verified, 1 final;
 ASPAs: 7 verified, 7 final;
lacnic:
 ROAs: 18036 verified;
 VRPs: 32565 verified, 30929 final;
 router certs: 0 verified;
 router keys: 0 verified, 0 final;
 ASPAs: 0 verified, 0 final;
ripe:
 ROAs: 39081 verified;
 VRPs: 211048 verified, 211043 final;
 router certs: 2 verified;
 router keys: 2 verified, 2 final;
 ASPAs: 57 verified, 57 final;
total:
 ROAs: 150432 verified;
 VRPs: 437903 verified, 434586 final;
 router certs: 3 verified;
 router keys: 3 verified, 3 final;
 ASPAs: 66 verified, 66 final;

Changed in version 0.11.0: Reformat, sort alphabetically and add
BGPsec information

New in version 0.13.0: Include ASPA

Local Exceptions

In some cases, you may want to override the global RPKI data set with your
own local exceptions. For example, when a legitimate route announcement is
inadvertently flagged as invalid due to a misconfigured ROA, you may want
to temporarily accept it to give the operators an opportunity to resolve the
issue.

You can do this by specifying route origins that should be filtered out of
the output, as well as origins that should be added, in a file using JSON
notation according to the SLURM standard specified in RFC 8416 [https://datatracker.ietf.org/doc/html/rfc8416.html].

You can use this example file [https://github.com/NLnetLabs/rpki-rs/blob/main/test-data/slurm/full.json]
as a starting point, but you can also build your own exceptions file based on
existing VRPs in the global RPKI data set using the SLURM output
format in combination with the --select-asn and
--select-prefix options.

See also

	Running Interactively

For example, this command will create a SLURM file that always authorises all
announcements that are currently done from AS196615:

routinator vrps --format slurm --select-asn 196615

The output will look like this:

{
 "slurmVersion": 1,
 "validationOutputFilters": {
 "prefixFilters": [],
 "bgpsecFilters": []
 },
 "locallyAddedAssertions": {
 "prefixAssertions": [
 {
 "asn": 196615,
 "prefix": "93.175.147.0/24",
 "maxPrefixLength": 24,
 "comment": "ripe"
 },
 {
 "asn": 196615,
 "prefix": "2001:7fb:fd03::/48",
 "maxPrefixLength": 48,
 "comment": "ripe"
 },
 {
 "asn": 196615,
 "prefix": "2001:7fb:fd04::/48",
 "maxPrefixLength": 48,
 "comment": "ripe"
 }
],
 "bgpsecAssertions": [

]
 }
}

Use the --exceptions option to refer to your file with local
exceptions. Routinator verifies that the JSON itself is valid, as well as the
specified values. The exceptions file will be re-read on every validation
run, so you can simply update the file whenever your exceptions change.

In the metrics Routinator provides, there are counters indicating how many
VRPs are added and excluded from the final data set as a result of your
exceptions.

Limiting Prefix Length

It’s possible to set the maximum length of IPv4 and IPv6 prefixes that will
be included in the VRP data set. You can set this with the
--limit-v4-len and --limit-v6-len options, respectively.

To illustrate this option we’ll use an extreme example:

routinator --limit-v4-len=8 --limit-v6-len=19 vrps

Now, all VRPs will be ignored that have a prefix with a length that is longer
than /8 IPv4 and /19 IPv6:

ASN,IP Prefix,Max Length,Trust Anchor
AS6253,48.0.0.0/8,24,arin
AS31399,53.0.0.0/8,8,ripe
AS7922,73.0.0.0/8,8,arin
AS3320,2003::/19,19,ripe
AS5511,2a01:c000::/19,48,ripe

Note that only the prefix length itself and not the maximum prefix length
value of the ROA is considered.

New in version 0.12.0.

Logging

To let you analyse the validated ROA payload (VRP) data set as well as its
overall health, Routinator logs an extensive amount of information. The log
levels used by syslog are utilised to allow filtering this information for
particular use cases.

The log levels represent the following information:

	error
	Information related to events that prevent Routinator from continuing to
operate at all, as well as all issues related to local configuration even
if Routinator will continue to run.

	warn
	Information about events and data that influences the set of VRPs produced
by Routinator. This includes failures to communicate with repository
servers, or encountering invalid objects.

	info
	Information about events and data that could be considered abnormal but do
not influence the set of VRPs produced. For example, when filtering of
unsafe VRPs is disabled, the unsafe
VRPs are logged with this level.

	debug
	Information about the internal state of Routinator that may be useful for
debugging.

Interactive Mode

When running interactively logging information will be
printed to standard error by default. You can redirect logging to syslog using
the --syslog option, or to a file with the --logfile option.
You can influence the amount of information returned with these options:

	-v, --verbose
	Print more information. If given twice, even more information is printed.
More specifically, a single -v increases the log level from the
default of warn to info, specifying it twice increases it to debug.

	-q, --quiet
	Print less information. Given twice, print nothing at all. A single
-q will drop the log level to error. Specifying -q
twice turns logging off completely.

Detached Server Mode

When running Routinator detached in server mode
logging to syslog is implied. Using the --syslog-facility option you
can specify the syslog facility to use, which is daemon by default. You also
redirect logging output to a file using the --logfile option.

Tip

Though almost all settings are available as command line options, you
would likely want to configure logging options in the
configuration file.

When you run the HTTP service logging information is also available at the
/log path. This will produce logging output of the last validation
run. The log level matches that set upon start. Note that the output is
collected after each validation run and is therefore only available after the
initial run has concluded.

Running as a Daemon

Routinator can run as a service that periodically fetches RPKI data, verifies
it and makes the resulting data set available through the built-in HTTP and
RPKI-to-Router (RTR) servers.

If you have installed Routinator through our software package repository, the
HTTP and RTR servers are enabled by default via the pre-installed
configuration file.
However, they are only available on localhost for security reasons. You will
have to explicitly change these options to make the services available to
other network devices.

If you have built Routinator using Cargo, no servers are enabled by default
at all. From the command line you can start Routinator as a daemon using the
server subcommand. Use the --http command line option or
the http-listen configuration file option to start the HTTP server.
To enable the RTR server, use the --rtr command line option or the
rtr-listen option in the configuration file. Of course you also start
both.

HTTPS and secure transports for RTR are supported as well. Please read the
HTTP Service and RTR Service sections for details.

Note

Both servers will only start serving data once the first validation
run has completed. Routinator will not reread the trust anchor
locators after it has started the service. Thus, if you add or
change a TAL you must restart Routinator or send it a
SIGUSR1.

Using 192.0.2.13 as an example IPv4 address, enter the following command to
start Routinator with the HTTP server listening on port 8323 and the RTR
server on port 3323:

routinator server --http 192.0.2.13:8323 --rtr 192.0.2.13:3323

Make sure IPv6 addresses are in square brackets, e.g.:

routinator server --rtr [2001:0DB8::13]:3323 --rtr 192.0.2.13:3323

By default Routinator will stay attached to your terminal and log to standard
error. You can provide the --detach option to run it in the
background instead, in which case logging information is written to syslog.
To learn more about what kind of information is returned and how to influence
what is logged and where, refer to the Logging section.

Attention

On Linux systems there is an overlap between IPv4 and IPv6.
You can’t bind to all interfaces on both address families,
i.e. 0.0.0.0 and [::], as it will result in a
‘address already in use’ error. Instead, to listen to both
IPv4 and IPv6 you can simply enter:

routinator server --rtr [::]:3323

RTR Service

Routinator has a built-in server for the RPKI-to-Router (RTR) protocol, which
can be started with the --rtr command line option or the
rtr-listen option in the configuration file.

Routinator supports RTR version 1 described in RFC 8210 [https://datatracker.ietf.org/doc/html/rfc8210.html], as well as the
older version from RFC 6810 [https://datatracker.ietf.org/doc/html/rfc6810.html]. After the first validation run has completed,
routers with support for route origin validation (ROV) can connect to
Routinator to fetch the processed data.

Tip

If you would like to run the RTR server as a separate daemon, for
example because you want to centralise validation and distribute
processed data to various locations where routers can connect, then
NLnet Labs provides RTRTR [https://rtrtr.docs.nlnetlabs.nl/en/stable/index.html].

In the examples throughout the documentation we use port 3323 for RTR
connections, but please note that this is not the IANA-assigned default port for the protocol, which
would be 323. But as this is a privileged port, you would need to be running
Routinator as root when otherwise there is no reason to do that.

Secure Transports

Although there is no mandatory-to-implement transport that provides
authentication and integrity protection, RFC 6810#section-7 [https://datatracker.ietf.org/doc/html/rfc6810.html#section-7] defines a
number of secure transports for RPKI-RTR that can be used to secure
communications, including TLS, SSH, TCP MD5 and TCP-AO.

Routinator has native support for TLS connections, and can be configured to
use SSH Transport with some additional tooling.

TLS Transport

It’s possible to natively use RTR-over-TLS connections with Routinator. There
is an IANA-assigned default
port for rpki-rtr-tls as well, in this case 324.

Currently, very few routers have implemented support for TLS, but it may be
especially useful to use secure connections when deploying our RTR data proxy
RTRTR [https://rtrtr.docs.nlnetlabs.nl/en/stable/index.html], as data may be flowing across the public
Internet.

In this example we’ll start Routinator’s RTR server listening on the IP
addresses 192.0.2.13 and 2001:0DB8::13 and use port 3324 to make sure it’s
not a privileged port.

First, indicate that you want a TLS connection with the --rtr-tls
option. Then use the --rtr-tls-cert option to specify the path to a
file containing the server certificates to be used. This file has to contain
one or more certificates encoded in PEM format. Lastly, use the
--rtr-tls-key option to specify the path to a file containing the
private key to be used for RTR-over-TLS connections. The file has to contain
exactly one private key encoded in PEM format:

routinator server --rtr-tls 192.0.2.13:3324 \
 --rtr-tls [2001:0DB8::13]:3324 \
 --rtr-tls-cert "/path/to/rtr-tls.crt" \
 --rtr-tls-key "/path/to/rtr-tls.key"

If you want to securely connect to Routinator with RTRTR using the
RTR-TLS Unit [https://rtrtr.docs.nlnetlabs.nl/en/stable/configuration.html#rtr-unit], a certificate that is
trusted by the usual set of web trust anchors will work with no additional
configuration. In case you generated a self-signed certificate for
Routinator, make sure to copy the certificate to your machine running RTRTR
and refer to the path of the file in your unit using the cacerts
configuration option.

New in version 0.11.0.

SSH Transport

These instructions were contributed by Wild Kat [https://github.com/wk].

SSH transport for RPKI-RTR can be configured with the help of netcat [http://netcat.sourceforge.net/] and OpenSSH [https://www.openssh.com/].

	Begin by installing the openssh-server and netcat packages.

Make sure Routinator is running as an RTR server on localhost:

routinator server --rtr 127.0.0.1:3323

	Create a username and a password for the router to log into the host with, such as rpki.

	Configure OpenSSH to expose an rpki-rtr subsystem that acts as a proxy into Routinator by editing the /etc/ssh/sshd_config file or equivalent to include the following line:

Define an `rpki-rtr` subsystem which is actually `netcat` used to
proxy STDIN/STDOUT to a running `routinator server --rtr 127.0.0.1:3323`
Subsystem rpki-rtr /bin/nc 127.0.0.1 3323

Certain routers may use old KEX algos and Ciphers which are no longer enabled by default.
These examples are required in IOS-XR 5.3 but no longer enabled by default in OpenSSH 7.3
Ciphers +3des-cbc
KexAlgorithms +diffie-hellman-group1-sha1

Only allow the rpki user to execute this one command
Match User rpki
 ForceCommand /bin/nc localhost 3323
 PasswordAuthentication yes
Match all

	Restart the OpenSSH server daemon.

	Set up the router running IOS-XR using this example configuration:

router bgp 65534
 rpki server 192.168.0.100
 username rpki
 password <password>
 transport ssh port 22

Configuring Routers

Route Origin Validation is supported on most hardware and software routers.
This documentation does not provide authoritative information on how to
configure each router platform, but aims to provide helpful pointers.

Hardware Routers

	Arista EOS [https://aristanetworks.force.com/AristaCommunity/s/article/bgp-origin-validation-rpki]

	Cisco IOS and IOS XE [https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-3s/irg-xe-3s-book/bgp-origin-as-validation.pdf]

	Cisco IOS-XR [https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/217020-bgp-rpki-with-xr7-cisco8000-whitepaper.html]

	Extreme Networks SLX-OS [https://documentation.extremenetworks.com/slxos/sw/20xx/20.3.1/l3config/GUID-D0B94396-6741-4799-921D-C8F5C5895CBC.shtml]

	Huawei VRP [https://support.huawei.com/enterprise/en/doc/EDOC1100055018/36627f51/improving-bgp-security]

	Juniper Junos [https://www.juniper.net/documentation/en_US/junos/topics/topic-map/bgp-origin-as-validation.html]

	Nokia SR OS [https://infocenter.nokia.com/public/7750SR160R4A/index.jsp?topic=%2Fcom.sr.unicast%2Fhtml%2Fbgp.html&cp=22_4_7_2&anchor=d2e5366]

	MikroTik [https://help.mikrotik.com/docs/pages/viewpage.action?pageId=59277471]

Software Routers

	BIRD [https://bird.network.cz/?get_doc&v=20&f=bird-6.html#ss6.13]

	FRRouting [https://docs.frrouting.org/en/latest/bgp.html#prefix-origin-validation-using-rpki]

	GoBGP [https://github.com/osrg/gobgp/blob/master/docs/sources/rpki.md]

	OpenBGPD [https://man.openbsd.org/bgpd.conf#SET_CONFIGURATION]

	VyOS [https://docs.vyos.io/en/latest/configuration/protocols/rpki.html]

See also

Rejecting RPKI Invalid BGP Routes [https://bgpfilterguide.nlnog.net/guides/reject_invalids/]
in the NLNOG BGP Filter Guide.

Note

For additions or corrections, please open an issue [https://github.com/NLnetLabs/routinator/issues] or submit a
pull request [https://github.com/NLnetLabs/routinator/blob/main/doc/manual/source/rtr-service.rst].

HTTP Service

Routinator has a built-in HTTP server, which can be started with the
--http command line option or the http-listen option in the
configuration file. Routinator natively supports TLS Transport and the
endpoints are set up in such a way that it’s easy to configure a
reverse proxy as well.

In addition to the various VRP output formats,
Routinator’s HTTP server also provides a user
interface, an API,
monitoring and logging endpoints.

After fetching and verifying all RPKI data for the first time, paths are
available for each VRP output format. For example, at
the /json path you can fetch a list of all VRPs in JSON format.

curl http://192.0.2.13:8323/json

Query Parameters

All paths accept selector expressions to limit the VRPs returned in the
form of a query parameter. You can use select-asn to select ASNs and
select-prefix to select prefixes. These expressions can be repeated
multiple times. The output for each additional parameter will be added to the
results.

For example, to only show the VRPs in JSON format authorising AS196615, use:

curl http://192.0.2.13:8323/json?select-asn=196615

This will produce the following output:

{
 "metadata": {
 "generated": 1626853335,
 "generatedTime": "2021-07-21T07:42:15Z"
 },
 "roas": [
 { "asn": "AS196615", "prefix": "2001:7fb:fd03::/48", "maxLength": 48, "ta": "ripe" },
 { "asn": "AS196615", "prefix": "2001:7fb:fd04::/48", "maxLength": 48, "ta": "ripe" },
 { "asn": "AS196615", "prefix": "93.175.147.0/24", "maxLength": 24, "ta": "ripe" }
]
 }

The query parameter exclude can be used to exclude certain payload types
from the response. The values routeOrigins, routerKeys, and aspas
disable inclusion of route origins, router keys, and ASPAs, respectively. The
values can either be given in separate exclude parameters or included in
one separated by commas.

New in version 0.13.0: Allow excluding specific data from the output

More Specific Prefixes

When you query for a prefix, by default Routinator will return the exact
match, as well as less specifics. The reason is that a VRP of an overlapping
less specific prefix can also affect the RPKI validity of a BGP announcement,
depending on the Maximum Prefix Length (MaxLength) that is set.

In some cases you may want more specifics to be displayed as well. For this
the more-specifics query string can be used. For example, when querying
for 82.221.32.0/20:

curl http://192.0.2.13:8323/json?select-prefix=82.221.32.0/20

Routinator will return the exact match and the VRP for the less specific /17
prefix:

{
 "metadata": {
 "generated": 1644266267,
 "generatedTime": "2022-02-07T20:37:47Z"
 },
 "roas": [
 { "asn": "AS30818", "prefix": "82.221.32.0/20", "maxLength": 20, "ta": "ripe" },
 { "asn": "AS44515", "prefix": "82.221.0.0/17", "maxLength": 17, "ta": "ripe" }
]
}

When including the more-specifics parameter in the same query:

curl http://192.0.2.13:8323/json?select-prefix=82.221.32.0/20&include=more-specifics

You will now see that a more specific /23 prefix is returned as well:

{
 "metadata": {
 "generated": 1644266267,
 "generatedTime": "2022-02-07T20:37:47Z"
 },
 "roas": [
 { "asn": "AS44515", "prefix": "82.221.46.0/23", "maxLength": 23, "ta": "ripe" },
 { "asn": "AS30818", "prefix": "82.221.32.0/20", "maxLength": 20, "ta": "ripe" },
 { "asn": "AS44515", "prefix": "82.221.0.0/17", "maxLength": 17, "ta": "ripe" }
]
}

Tip

The more-specifics parameter will also work if there is no
exactly matching or less specific prefix. In that case you
will get a list of all more specific VRPs covered by the prefix you
supplied in the query.

Changed in version 0.11.0: more-specifics query parameter

TLS Transport

Routinator offers native TLS support for both HTTP and RTR
connections. In this example we’ll start Routinator’s HTTPS
server listening on the IP addresses 192.0.2.13 and 2001:0DB8::13 and use
port 8324.

First, indicate that you want a TLS connection with the --http-tls
option. Then use the --http-tls-cert option to specify the path to
a file containing the server certificates to be used. This file has to
contain one or more certificates encoded in PEM format. Lastly, use the
--http-tls-key option to specify the path to a file containing the
private key to be used for HTTPS connections. The file has to contain exactly
one private key encoded in PEM format:

routinator server --http-tls 192.0.2.13:8324 \
 --http-tls [2001:0DB8::13]:8324 \
 --http-tls-cert "/path/to/http-tls.crt" \
 --http-tls-key "/path/to/http-tls.key"

New in version 0.11.0.

Using a Reverse Proxy

Though TLS is natively supported, it may be more convenient to set up a
reverse proxy to serve HTTPS data. This way you’ll be using a production
grade web server that for example allows automation of certificate renewal.

For convenience, all the files and folders for the user
interface are hosted under the /ui path and the
API endpoints are under /api. For example, this
allows you to just expose the UI and not any of the other paths, such as
those serving the various VRP output formats.

NGINX

To only expose the user interface through NGINX, this is what your
configuration needs at a minimum when running it on the same server as
Routinator runs on, using port 8323.

Using the = modifier, the first entry only forwards if the path is
exactly / so that paths not explicitly mentioned, such as /json,
are not forwarded. For more information, please refer to the NGINX
documentation [https://nginx.org/en/docs/http/server_names.html].

location = / {
 proxy_pass http://127.0.0.1:8323/;
}
location /ui {
 proxy_pass http://127.0.0.1:8323/ui;
}
location /api {
 proxy_pass http://127.0.0.1:8323/api;
}

Apache

To achieve a similar goal with Apache, you can use this configuration.

<VirtualHost *:443>
 ProxyPreserveHost On
 AllowEncodedSlashes On

 <LocationMatch "^/$">
 Redirect / /ui
 </LocationMatch>

 ProxyPass /api http://127.0.0.1:8323/api
 ProxyPassReverse /api http://127.0.0.1:8323/api

 ProxyPass /ui http://127.0.0.1:8323/ui
 ProxyPassReverse /ui http://127.0.0.1:8323/ui
</VirtualHost>

User Interface

Routinator’s HTTP service offers a web based user interface on the /ui
path. In addition to displaying detailed statistics from the last validation
run Routinator has performed, as well as HTTP and RTR connection metrics, the
most prominent functionality is the Prefix Check.

[image: Routinator user interface]

The Routinator Prefix Check

By default, you only need to provide an IP address or prefix. When clicking
Validate, Routinator will look up from which Autonomous System
the closest matching prefix is announced in BGP and perform RPKI validation.
Alternatively, you can manually provide an ASN.

The returned RPKI validity state will be Valid, Invalid or NotFound and
is based on the current set of Validated ROA Payloads (VRPs) in the cache.
Routinator will provide an overview of all VRPs that led to the result, along
with the reason for the outcome.

Routinator doesn’t just retrieve the ASN for a specific prefix, but it also
fetches related information. In addition to validating the longest matching
prefix (or exact match if this is what you selected), details can be provided
on less specific and more specific announcements seen in BGP, as well as
other resources allocated to the same organisation.

[image: Routinator user interface]

Prefixes related to your query

Routinator does not perform the BGP and allocation lookups itself, but relies
on the open-source roto-api [https://github.com/NLnetLabs/roto-api]
service, developed and hosted by NLnet Labs at bgp-api.net [https://rest.bgp-api.net/api/v1/]. The service uses these data sources:

	BGP information based on RISWhois [https://www.ris.ripe.net/dumps/]
data, which is part of the RIPE NCC’s Routing Information Service [https://ris.ripe.net/] (RIS). This data set is currently updated every
8 hours.

	Resource allocations retrieved from statistics [https://www.nro.net/about/rirs/statistics/] hosted by the five
Regional Internet Registries. These are updated daily.

New in version 0.8.3.

Changed in version 0.10.0: The Prefix Check

API Endpoints

The HTTP service supports GET requests on the following paths:

	/api/v1/status
	Returns exhaustive information in JSON format on all trust anchors,
repositories, RRDP and rsync connections, as well as RTR and HTTP
sessions. This data set provides the source for the Routinator user
interface.

	/api/v1/validity/as-number/prefix
	Returns a JSON object describing whether the route announcement given by
its origin AS Number and address prefix is RPKI valid, invalid, or not
found. A complete list of VRPs that caused the result is included. For
details about its contents see validity checker.

	/validity?asn=as-number&prefix=prefix
	Same as above but with a more form-friendly calling convention.

	/json-delta, /json-delta?session=session?serial=serial
	Returns a JSON object with the changes since the dataset version
identified by the session and serial query parameters. If a delta
cannot be produced from that version, the full data set is returned and
the member reset in the object will be set to true. In either case,
the members session and serial identify the version of the data set
returned and their values should be passed as the query parameters in a
future request.

The members announced and withdrawn contain arrays with route
origins that have been announced and withdrawn, respectively, since the
provided session and serial. If reset is true, the withdrawn
member is not present.

	/json-delta/notify, /json-delta/notify?session=session&serial=serial
	Returns a JSON object with two members session and serial which
contain the session ID and serial number of the current data set.

If the session and serial query parameters are provided, and the
session ID and serial number of the current data set are identical to
the provided values, the request will not return until a new data set is
available. This can be used as a means to get notified when the data set
has been updated.

In addition, the /log endpoint returns logging
information and the /metrics, /status and
/version endpoints provide monitoring data.

New in version 0.9.0: The /json-delta path

Changed in version 0.9.0: The /api/v1/status path

New in version 0.13.0: The /json-delta/notify path

Monitoring

The HTTP server in Routinator provides endpoints for monitoring the
application on the following paths:

	/version
	Returns the version of the Routinator instance

	/metrics
	Exposes exhaustive time series data specifically for Prometheus [https://prometheus.io/], containing metrics on all trust anchors,
repositories, RRDP and rsync connections, as well as RTR and HTTP
sessions. If desired, dedicated port 9556 [https://github.com/prometheus/prometheus/wiki/Default-port-allocations]
is allocated for the exporter.

	/api/v1/status
	Returns exhaustive information in JSON format on all trust anchors,
repositories, RRDP and rsync connections, as well as RTR and HTTP
sessions. This data set provides the source for the Routinator user
interface.

	/status
	Returns a subset of the metrics information in a concise plain text
format

Metrics

	Update metrics
	
	When the last update started and finished

	The total duration of the last update

	The retrieval duration and exit code [https://lxadm.com/Rsync_exit_codes] for each rsync publication point

	The retrieval duration and HTTP status code [https://en.wikipedia.org/wiki/List_of_HTTP_status_codes] for each RRDP
publication point

	Object metrics
	
	For each cryptographic object that can appear in the RPKI, the number of
valid, invalid and stale items per trust anchor and repository

	The number of validated ROA payloads (VRPs) per Trust Anchor and
repository

	The number of VRPs added and excluded locally

	RTR server
	
	The current RTR serial number

	The current number of RTR connections

	The total amount of bytes sent and received over the RTR connection

	Metrics for each RTR client is available if the
--rtr-client-metrics option is provided

	HTTP server
	
	The current number of HTTP connections

	The total amount of bytes sent and received over the HTTP connection

	The number of HTTP requests

Refer to the Reference section for a complete overview for all metrics in
the JSON format and the Prometheus
format.

Grafana

Using the Prometheus endpoint it’s possible to build a detailed dashboard
using for example Grafana [https://grafana.com]. We provide a template [https://grafana.com/grafana/dashboards/11922] to get started.

[image: Time series for each RPKI Repository]

Time series for each RPKI Repository

[image: Time series for each Trust Anchor]

Time series for each Trust Anchor

Running Interactively

Routinator can perform RPKI validation as a one-time operation and print a
validated ROA payload (VRP) list in various formats using the vrps
subcommand and specifying the desired format.

Warning

If you have installed Routinator through the NLnet Labs software
package repository [https://packages.nlnetlabs.nl], the
installation script will set up the application to run as a
service. You should not run Routinator as a daemon and
interactively at the same time on the same machine.

For example, to print the VRPs in CSV format to standard output, run:

routinator vrps --format csv

To generate a file with with the validated ROA payloads in JSON format, run:

routinator vrps --format json --output authorisedroutes.json

During the validation process, logging information will be printed to standard
error. You can influence the amount of details returned with the
--verbose and --quiet options. To learn more about what kind
of information returned, refer to the Logging section.

If you have enabled BGPsec and/or
ASPA validation, in some output formats the amount
of data can be quite overwhelming. You can exclude specific data types for the
output with the --no-route-origins, --no-router-keys and
the --noaspas options.

Changed in version 0.13.0: Allow excluding specific data from the output.

Query Options

In case you are looking for specific information in the output, Routinator
allows you to add selectors to see if a prefix or ASN is covered or matched by a
VRP. You can do this using the --select-asn and
--select-prefix options.

When using --select-asn, you can use both AS64511 and 64511
as the notation. With --select-prefix, the result will include VRPs
regardless of their ASN and MaxLength. Both selector flags can be combined
and used multiple times in a single query. The output for each additional
selector will be added to the results.

A validation run will be started before returning the result, making sure you
get the latest information. If you would like a result from the current cache,
you can use the --noupdate option.

Here is an example selecting VRPs related to a specific ASN, produced in
json format:

routinator vrps --format json --select-asn 196615

This results in:

{
 "metadata": {
 "generated": 1626853335,
 "generatedTime": "2021-07-21T07:42:15Z"
 },
 "roas": [
 { "asn": "AS196615", "prefix": "2001:7fb:fd03::/48", "maxLength": 48, "ta": "ripe" },
 { "asn": "AS196615", "prefix": "2001:7fb:fd04::/48", "maxLength": 48, "ta": "ripe" },
 { "asn": "AS196615", "prefix": "93.175.147.0/24", "maxLength": 24, "ta": "ripe" }
]
}

More Specific Prefixes

When you query for a prefix, by default Routinator will return the exact
match, as well as less specifics. The reason is that a VRP of an overlapping
less specific prefix can also affect the RPKI validity of a BGP announcement,
depending on the Maximum Prefix Length (MaxLength) that is set.

In some cases you may want more specifics to be displayed as well. For this
the --more-specifics option can be used. For example, when querying
for 82.221.32.0/20:

routinator vrps --format json --select-asn 82.221.32.0/20

Routinator will return the exact match and the VRP for the less specific /17
prefix:

{
 "metadata": {
 "generated": 1644266267,
 "generatedTime": "2022-02-07T20:37:47Z"
 },
 "roas": [
 { "asn": "AS30818", "prefix": "82.221.32.0/20", "maxLength": 20, "ta": "ripe" },
 { "asn": "AS44515", "prefix": "82.221.0.0/17", "maxLength": 17, "ta": "ripe" }
]
}

When including the --more-specifics option in the same query:

routinator vrps --format json --select-asn 82.221.32.0/20 --more-specifics

You will now see that a more specific /23 prefix is returned as well:

{
 "metadata": {
 "generated": 1644266267,
 "generatedTime": "2022-02-07T20:37:47Z"
 },
 "roas": [
 { "asn": "AS44515", "prefix": "82.221.46.0/23", "maxLength": 23, "ta": "ripe" },
 { "asn": "AS30818", "prefix": "82.221.32.0/20", "maxLength": 20, "ta": "ripe" },
 { "asn": "AS44515", "prefix": "82.221.0.0/17", "maxLength": 17, "ta": "ripe" }
]
}

Tip

The --more-specifics option will also work if there is no
exactly matching or less specific prefix. In that case you
will get a list of all more specific VRPs covered by the prefix you
supplied in the query.

Exclude Specific Data Types

If you have enabled BGPsec and/or
ASPA validation, in some output formats the amount of
data can be quite overwhelming. You can exclude specific payload types with
the --no-route-origins, --no-router-keys and
--noaspas options to disable inclusion of route origins, router
keys, and ASPAs, respectively.

Deprecated since version 0.9.0: --filter-asn and --filter-prefix

Changed in version 0.11.0: Add the --more-specifics option

New in version 0.13.0: Allow excluding specific data from the output

Validity Checker

You can check the RPKI origin validation status of one or more BGP announcements
using the validate subcommand and by supplying the ASN and prefix. A
validation run will be started before returning the result, making sure you get
the latest information. If you would like a result from the current cache, you
can use the --noupdate option:

routinator validate --asn 12654 --prefix 93.175.147.0/24

This will simply return the RPKI validity state:

Invalid

You can also add the --json option:

routinator validate --json --asn 12654 --prefix 93.175.147.0/24

This will produce a detailed analysis of the reasoning behind the validation
outcome printed in JSON format. In case of an Invalid state, the reason
indicates whether this is because the announcement is originated by an
unauthorised AS ("reason": "as"), or if the length of the announced prefix
is more specific than the authorised prefix or, if present, the maximum prefix
length allows ("reason": "length"). Lastly, a complete list of VRPs that
caused the result is included:

{
 "validated_routes": [
 {
 "route": {
 "origin_asn": "AS12654",
 "prefix": "93.175.147.0/24"
 },
 "validity": {
 "state": "invalid",
 "reason": "as",
 "description": "At least one VRP Covers the Route Prefix, but no VRP ASN matches the route origin ASN",
 "VRPs": {
 "matched": [
],
 "unmatched_as": [
 {
 "asn": "AS196615",
 "prefix": "93.175.147.0/24",
 "max_length": "24"
 }
],
 "unmatched_length": [
]
 }
 }
 }
],
 "generatedTime": "2021-07-21T11:36:44Z"
}

If you run the HTTP service in daemon mode, validation information is also
available via the user interface and at the /validity
API endpoint.

Reading Input From a File

Routinator can also read input to validate from a file using the
--input option. If the file is given as a single dash, input is
read from standard input. You can also save the results to a file using the
--output option.

You can provide a simple plain text file with the routes you would like to have
verified by Routinator. The input file should have one route announcement per
line, provided as a prefix followed by an ASCII-art arrow => surrounded by
white space and followed by the AS Number of the originating Autonomous System.

For example, let’s provide Routinator with this file, saved as
beacons.txt:

93.175.147.0/24 => 12654
2001:7fb:fd02::/48 => 12654

Now we refer to the file with the --input option:

routinator validate --input beacons.txt

Routinator provides the RPKI validity state in the output:

93.175.147.0/24 => AS12654: invalid
2001:7fb:fd02::/48 => AS12654: valid

With the --json option you can provide a file in JSON format. It
should consist of a single object with one member routes which contains an
array of objects. Each object describes one route announcement through its
prefix and asn members which contain a prefix and originating AS number as
strings, respectively.

For example, let’s provide Routinator with this beacons.json file:

{
 "routes": [{
 "asn": "AS12654",
 "prefix": "93.175.147.0/24"
 },
 {
 "asn": "AS12654",
 "prefix": "2001:7fb:fd02::/48"
 }
]
}

Then refer to the file with the --json and --input
options:

routinator validate --json --input beacons.json

Routinator produces a JSON object that includes the validity state and a
detailed analysis of the reasoning behind the outcome of each route:

{
 "validated_routes": [
 {
 "route": {
 "origin_asn": "AS12654",
 "prefix": "93.175.147.0/24"
 },
 "validity": {
 "state": "invalid",
 "reason": "as",
 "description": "At least one VRP Covers the Route Prefix, but no
 VRP ASN matches the route origin ASN",
 "VRPs": {
 "matched": [
],
 "unmatched_as": [
 {
 "asn": "AS196615",
 "prefix": "93.175.147.0/24",
 "max_length": "24"
 }
],
 "unmatched_length": [
]
 }
 }
 },
 {
 "route": {
 "origin_asn": "AS12654",
 "prefix": "2001:7fb:fd02::/48"
 },
 "validity": {
 "state": "valid",
 "description": "At least one VRP Matches the Route Prefix",
 "VRPs": {
 "matched": [
 {
 "asn": "AS12654",
 "prefix": "2001:7fb:fd02::/48",
 "max_length": "48"
 }
],
 "unmatched_as": [
],
 "unmatched_length": [
]
 }
 }
 }
]
}

New in version 0.9.0.

Dumping Stored Data

The dump subcommand writes the contents of all stored data to the file
system. This is primarily intended for debugging but can be used to get access
to the view of the RPKI data that Routinator currently sees. This subcommand has
only one option, --output, which specifies the directory where the
output should be written.

Three directories will be created in the output directory:

	rrdp
	This directory contains all the files collected via RRDP from the various
repositories. Each repository is stored in its own directory. The mapping
between rpkiNotify URI and path is provided in the
repositories.json file. For each repository, the files are stored in
a directory structure based on the components of the file as rsync URI.

	rsync
	This directory contains all the files collected via rsync. The files are
stored in a directory structure based on the components of the file’s rsync
URI.

	store
	This directory contains all the files used for validation. Files collected
via RRDP or rsync are copied to the store if they are correctly referenced
by a valid manifest. This part contains one directory for each RRDP
repository similarly structured to the rrdp directory and one
additional directory rsync that contains files collected via rsync.

	ta
	This directory contains the trust anchor certificates. Files are stored
in a directory structure two levels deep. The first level is the schema
portion of the certificate’s URI, i.e., https or rsync, and the
second level is the authority portion of the URI, e.g., tal.apnic.net.
Within this second level, the certificate is stored in a file that has
the hexadecimal encoding of the SHA-256 hash of the certificate’s URI
as the file name with the extension .cer appended.

New in version 0.9.0.

Changed in version 0.11.1: Stored trust anchor certificates are dumped into the ta directory.

Manual Page

Synopsis

routinator [options] vrps [vrps-options] [-o output-file] [-f format]

routinator [options] validate [validate-options] [-a asn] [-p prefix]

routinator [options] server [server-options]

routinator [options] update [update-options]

routinator man [-o file]

routinator -h

routinator -V

Description

Routinator collects and processes Resource Public Key Infrastructure (RPKI)
data. It validates the Route Origin Attestations contained in the data and
makes them available to your BGP routing workflow.

It can run in one-shot mode outputting a list of validated ROA payloads in
various formats, as a server for the RPKI-to-Router (RTR) protocol that many
routers implement to access the data, or via HTTP.

These modes and additional operations can be chosen via commands. For the
available commands, see COMMANDS below.

Options

The available options are:

	
-c path, --config=path

	Provides the path to a file containing basic configuration. If this
option is not given, Routinator will try to use
$HOME/.routinator.conf if that exists. If that doesn’t exist,
either, default values for the options as described here are used.

See CONFIGURATION FILE below for more information on the format and
contents of the configuration file.

	
-r dir, --repository-dir=dir

	Specifies the directory to keep the local repository in. This is
the place where Routinator stores the RPKI data it has collected
and thus is a copy of all the data referenced via the trust
anchors.

If omitted, defaults to $HOME/.rpki-cache/repository.

	
--no-rir-tals

	If present, Routinator will not use the bundled trust anchor locators
(TALs) of the five Regional Internet Registries (RIRs).

Trust anchor locators are the starting points for collecting and
validating RPKI data. Each of the five RIRs provides a TAL that adds
resources from their area. For normal production installations, these
are the only TALs that should be used.

Using this option as well as the --tal and
--extra-tals-dir options you can change which TALs
Routinator should use.

	
--tal=name

	Use the bundled TAL with the given name in addition to any other TAL.

Each RIR TAL is available through this option as well as TALs for a
few select test environments. If you use this option with the name
list, Routinator will print a list of all available bundled TALS and
exit.

The option can be given more than once.

	
--extra-tals-dir=dir

	Specifies a directory containing additional trust anchor locators
(TALs) to use. Routinator will use all files in this directory with
an extension of .tal as TALs. These files need to be in the format
described by RFC 8630 [https://datatracker.ietf.org/doc/html/rfc8630.html].

Note that Routinator will use all TALs provided. That means that if a
TAL in this directory is one of the bundled TALs, then these resources
will be validated twice.

	
-x file, --exceptions=file

	Provides the path to a local exceptions file. The option can be used
multiple times to specify more than one file to use. Each file is a
JSON file as described in RFC 8416 [https://datatracker.ietf.org/doc/html/rfc8416.html]. It lists both route origins that
should be filtered out of the output as well as origins that should be
added.

	
--strict

	If this option is present, the repository will be validated in strict
mode following the requirements laid out by the standard documents very
closely. With the current RPKI repository, using this option will lead
to a rather large amount of invalid route origins and should therefore
not be used in practice.

See RELAXED DECODING below for more information.

	
--stale=policy

	This option defines how deal with stale objects. In RPKI, manifests and
CRLs can be stale if the time given in their next-update field is in
the past, indicating that an update to the object was scheduled but
didn’t happen. This can be because of an operational issue at the
issuer or an attacker trying to replay old objects.

There are three possible policies that define how Routinator should
treat stale objects.

A policy of reject instructs Routinator to consider all stale objects
invalid. This will result in all material published by the CA issuing
this manifest and CRL to be invalid including all material of any child
CA.

The warn policy will allow Routinator to consider any stale object to
be valid. It will, however, print a warning in the log allowing an
operator to follow up on the issue.

Finally, the accept policy will cause Routinator to quietly accept
any stale object as valid.

In Routinator 0.8.0 and newer, reject is the default policy if the
option is not provided. In version 0.7.0 the default for this option
was warn. In all previous versions warn was hard-wired.

	
--unsafe-vrps=policy

	This option defines how to deal with “unsafe VRPs.” If the address
prefix of a VRP overlaps with any resources assigned to a CA that has
been rejected because if failed to validate completely, the VRP is said
to be unsafe since using it may lead to legitimate routes being flagged
as RPKI invalid.

There are three options how to deal with unsafe VRPs:

A policy of reject will filter out these VRPs. Warnings will be
logged to indicate which VRPs have been filtered

The warn policy will log warnings for unsafe VRPs but will add them
to the valid VRPs.

Finally, the accept policy will quietly add unsafe VRPs to the valid
VRPs. This is the default policy.

For more information on the process of validation implemented in
Routinator, see the section VALIDATION below.

	
--unknown-objects=policy

	Defines how to deal with unknown types of RPKI objects. Currently,
only certificates (.cer), CRLs (.crl), manifests (.mft), ROAs (.roa),
and Ghostbuster Records (.gbr) are allowed to appear in the RPKI
repository.

There are, once more, three policies for dealing with an object of any
other type:

The reject policy will reject the object as well as the entire CA.
Consequently, an unknown object appearing in a CA will mark all other
objects issued by the CA as invalid as well.

The policy of warn will log a warning, ignore the object, and accept
all known objects issued by the CA.

The similar policy of accept will quietly ignore the object and
accept all known objects issued by the CA.

The default policy if the option is missing is warn.

Note that even if unknown objects are accepted, they must appear in
the manifest and the hash over their content must match the one given
in the manifest. If the hash does not match, the CA and all its objects
are still rejected.

	
--limit-v4-len=length, --limit-v6-len=length

	If present, defines the maximum length of IPv4 prefixes or IPv6
prefixes, respectively, that will be included in the VRP data set. All
VRPs for prefixes with a longer prefix length will be ignored. Note that
only the prefix length itself, not the max length is considered.

If either option is missing, VRPs for all prefixes of that particular
address family are included.

	
--allow-dubious-hosts

	As a precaution, Routinator will reject rsync and HTTPS URIs from RPKI
data with dubious host names. In particular, it will reject the name
localhost, host names that consist of IP addresses, and a host name
that contains an explicit port.

This option allows to disable this filtering.

	
--fresh

	Delete and re-initialize the local data storage before starting. This
option should be used when Routinator fails after reporting corrupt
data storage.

	
--disable-rsync

	If this option is present, rsync is disabled and only RRDP will be
used.

	
--rsync-command=command

	Provides the command to run for rsync. This is only the command itself.
If you need to provide options to rsync, use the rsync-args
configuration file setting instead.

If this option is not given, Routinator will simply run rsync and hope
that it is in the path.

	
--rsync-timeout=seconds

	Sets the number of seconds an rsync command is allowed to run before it
is terminated early. This protects against hanging rsync commands that
prevent Routinator from continuing. The default is 300 seconds which
should be long enough except for very slow networks. Set the option to
0 to disable the timeout.

	
--disable-rrdp

	If this option is present, RRDP is disabled and only rsync will be
used.

	
--rrdp-fallback=policy

	Defines the circumstance when access via rsync should be tried for a
CA that announces it can be updated via RRDP. In general, access via
RRDP is less resource intensive and more secure than rsync and will
therefore be preferred. This option specifies what to do when access
to an RRDP repository fails.

The policy never means that rsync is never tried for a CA that
announces RRDP.

The policy stale means that rsync is tried if an update via RRDP
fails and there is no current local copy of the RRDP repository. A
local copy is considered current if it was last updated within a
time span chosen on a per-repository basis between the
--refresh time and --rrdp-fallback-time.

The policy new means that rsync is tried if an update via RRDP
fails and there is no local copy of the RRDP repository at all. In
other words, an update via RRDP has never succeeded for the repository.
Choosing this policy allows a repository operator some leeway when
first enabling RRDP support.

The default policy if this option is not given is stale.

	
--rrdp-fallback-time=seconds

	Sets the maximum time in seconds since a last successful update of an
RRDP repository before Routinator falls back to using rsync. The
default is 3600 seconds. If the given value is smaller than twice the
refresh time, it is silently increased to that value.

The actual time is chosen at random between the refresh time and this
value in order to spread out load on the rsync server.

	
--rrdp-max-delta-count=count

	If the number of deltas necessary to update an RRDP repository is
larger than the value provided by this option, the snapshot is used
instead. If the option is missing, the default of 100 is used.

	
--rrdp-timeout=seconds

	Sets the timeout in seconds for any RRDP-related network operation,
i.e., connects, reads, and writes. If this option is omitted, the
default timeout of 300 seconds is used. Set the option to 0 to disable
the timeout.

	
--rrdp-connect-timeout=seconds

	Sets the timeout in seconds for RRDP connect requests. If omitted, the
general timeout will be used.

	
--rrdp-tcp-keepalive=seconds

	Sets the value of the TCP keepalive duration in seconds for RRDP
connections. The default if this option is omitted is 60 seconds. Set
the option to 0 to disable the use of TCP keepalives.

	
--rrdp-local-addr=addr

	If present, sets the local address that the RRDP client should bind to
when doing outgoing requests.

	
--rrdp-root-cert=path

	This option provides a path to a file that contains a certificate in
PEM encoding that should be used as a trusted certificate for HTTPS
server authentication. The option can be given more than once.

Providing this option does not disable the set of regular HTTPS
authentication trust certificates.

	
--rrdp-proxy=uri

	This option provides the URI of a proxy to use for all HTTP connections
made by the RRDP client. It can be either an HTTP or a SOCKS URI. The
option can be given multiple times in which case proxies are tried in
the given order.

	
--rrdp-keep-responses=path

	If this option is enabled, the bodies of all HTTPS responses received
from RRDP servers will be stored under path. The sub-path will be
constructed using the components of the requested URI. For the
responses to the notification files, the timestamp is appended to the
path to make it possible to distinguish the series of requests made
over time.

	
--max-object-size=BYTES

	Limits the size of individual objects received via either rsync or RRDP
to the given number of bytes. The default value if this option is not
present is 20,000,000 (i.e., 20 MBytes). Use a value of 0 to disable
the limit.

	
--max-ca-depth=count

	The maximum number of CAs a given CA may be away from a trust anchor
certificate before it is rejected. The default value is 32.

	
--enable-bgpsec

	If this option is present, BGPsec router keys will be processed
during validation and included in the produced data set.

	
--dirty

	If this option is present, unused files and directories will not be
deleted from the repository directory after each validation run.

	
--validation-threads=count

	Sets the number of threads to distribute work to for validation. Note
that the current processing model validates trust anchors all in one
go, so you are likely to see less than that number of threads used
throughout the validation run.

	
-v, --verbose

	Print more information. If given twice, even more information is
printed.

More specifically, a single -v increases the log level from
the default of warn to info, specifying it more than once increases
it to debug.

See LOGGING below for more information on what information is logged
at the different levels.

	
-q, --quiet

	Print less information. Given twice, print nothing at all.

A single -q will drop the log level to error. Repeating
-q more than once turns logging off completely.

	
--syslog

	Redirect logging output to syslog.

This option is implied if a command is used that causes Routinator to
run in daemon mode.

	
--syslog-facility=facility

	If logging to syslog is used, this option can be used to specify the
syslog facility to use. The default is daemon.

	
--logfile=path

	Redirect logging output to the given file.

	
-h, --help

	Print some help information.

	
-V, --version

	Print version information.

Commands

Routinator provides a number of operations around the local RPKI repository.
These can be requested by providing different commands on the command line.

	
vrps

	This command requests that Routinator update the local repository and
then validate the Route Origin Attestations in the repository and output
the valid route origins, which are also known as Validated ROA Payloads
or VRPs, as a list.

	
-o file, --output=file

	Specifies the output file to write the list to. If this option is
missing or file is - the list is printed to standard output.

	
-f format, --format=format

	The output format to use. Routinator currently supports the
following formats:

	csv
	The list is formatted as lines of comma-separated values of
the autonomous system number, the prefix in slash notation,
the maximum prefix length, and an abbreviation for the
trust anchor the entry is derived from. The latter is the
name of the TAL file without the extension .tal. This can
be overwritten with the tal-labels config file option.

This is the default format used if the -f option
is missing.

	csvcompat
	The same as csv except that all fields are embedded in
double quotes and the autonomous system number is given
without the prefix AS. This format is pretty much
identical to the CSV produced by the RIPE NCC Validator.

	csvext
	An extended version of csv each line contains these
comma-separated values: the rsync URI of the ROA the line
is taken from (or “N/A” if it isn’t from a ROA), the
autonomous system number, the prefix in slash notation, the
maximum prefix length, the not-before date and not-after
date of the validity of the ROA.

This format was used in the RIPE NCC RPKI Validator version
1. That version produces one file per trust anchor. This is
not currently supported by Routinator – all entries will
be in one single output file.

	json
	The list is placed into a JSON object with up to four
members: roas contains the validated route origin
authorizations, routerKeys contains the validated
BGPsec router keys, aspas contains the validated
ASPA payload, and metadata contains some information
about the validation run itself. Of the first three, only
those members are present that have not been disabled or
excluded.

The roas member contains an array of objects with four
elements each: The autonomous system number of the network
authorized to originate a prefix in asn, the prefix in
slash notation in prefix, the maximum prefix length of
the announced route in maxLength, and the trust anchor
from which the authorization was derived in ta.

The routerKeys member contains an array of objects with
four elements each: The autonomous system using the router
key is given in asn, the key identifier as a string of
hexadecimal digits in SKI, the actual public key as a
Base 64 encoded string in routerPublicKey, and the trust
anchor from which the authorization was derived in ta.

The aspa member contains an array of objects with four
members each: The customer member contains the customer
ASN, afi the address family as either “ipv4” or “ipv6”,
providers contains the provider ASN set as an array, and
the trust anchor from which the authorization was derived
in ta.

The output object also includes a member named metadata
which provides additional information. Currently, this is a
member generated which provides the time the list was
generated as a Unix timestamp, and a member generatedTime
which provides the same time but in the standard ISO date
format.

If only route origins are included, this format is identical
to that produced by the RIPE NCC
RPKI Validator except for different naming of the trust
anchor.
Routinator uses the name of the TAL file without the
extension .tal whereas the RIPE NCC Validator has a
dedicated name for each.

	jsonext
	The list is placed into a JSON object with up to four
members: roas contains the validated route origin
authorizations, routerKeys contains the validated
BGPsec router keys, aspas contains the validated
ASPA payload, and metadata contains some information
about the validation run itself. Of the first three, only
those members are present that have not been disabled or
excluded.

The roas member contains an array of objects with four
elements each: The autonomous system number of the network
authorized to originate a prefix in asn, the prefix in
slash notation in prefix, the maximum prefix length of
the announced route in maxLength, and extended
information about the source of the authorization in
source.

The routerKeys member contains an array of objects with
four elements each: The autonomous system using the router
key is given in asn, the key identifier as a string of
hexadecimal digits in SKI, the actual public key as a
Base 64 encoded string in routerPublicKey, and extended
information about the source of the key is contained in
source.

The aspa member contains an array of objects with four
members each: The customer member contains the customer
ASN, afi the address family as either “ipv4” or “ipv6”,
providers contains the provider ASN set as an array, and
information about the source of the data can be found in
source.

This source information the same for route origins and
router keys. It consists of an array. Each item in that
array is an object providing details of a source.
The object will have a type of roa if it was derived
from a valid ROA object, cer if it was derived from
a published router certificate, or exception if it was an
assertion in a local exception file.

For RPKI objects, tal provides the name of the trust
anchor locator the object was published under, uri
provides the rsync URI of the ROA or router certificate,
validity provides the validity of the ROA itself,
chainValidity the validity considering the validity of
the certificates along the validation chain, and
stale the time when any of the publication points along
the validation chain becomes stale.

For assertions from local exceptions, path will provide
the path of the local exceptions file and, optionally,
comment will provide the comment if given for the
assertion.

The output object also includes a member named metadata
which provides additional information. Currently, this is a
member generated which provides the time the list was
generated as a Unix timestamp, and a member generatedTime
which provides the same time but in the standard ISO date
format.

Please note that because of this additional information,
output in jsonext format will be quite large.

	slurm
	The list is formatted as locally added assertions of a
local exceptions file defined by RFC 8416 (also known as
SLURM). The produced file will have empty validation
output filters.

	openbgpd
	Choosing this format causes Routinator to produce a
roa-set configuration item for the OpenBGPD
configuration.

	bird1
	Choosing this format causes Routinator to produce a roa
table configuration item for the BIRD1 configuration.

	bird2
	Choosing this format causes Routinator to produce a roa
table configuration item for the BIRD2 configuration.

	rpsl
	This format produces a list of RPSL objects with the
authorization in the fields route, origin, and
source. In addition, the fields descr, mnt-by,
created, and last-modified, are present with more or
less meaningful values.

	summary
	This format produces a summary of the content of the RPKI
repository. For each trust anchor, it will print the number
of verified ROAs and VRPs. Note that this format does not
take filters into account. It will always provide numbers
for the complete repository.

	none
	This format produces no output whatsoever.

	
-n, --noupdate

	The repository will not be updated before producing the list.

	
--complete

	If any of the rsync commands needed to update the repository
failed, complete the operation but provide exit status 2. If this
option is not given, the operation will complete with exit status
0 in this case.

	
-a asn, --select-asn=asn

	Only output VRPs for the given ASN. The option can be given
multiple times, in which case VRPs for all provided ASNs are
provided. ASNs can be given with or without the prefix AS.

	
-p prefix, --select-prefix=prefix

	Only output VRPs with an address prefix that covers the given
prefix, i.e., whose prefix is equal to or less specific than the
given prefix. This will include VRPs regardless of their ASN and
max length. In other words, the output will include all VRPs that
need to be considered when deciding whether an announcement for
the prefix is RPKI valid or invalid.

The option can be given multiple times, in which case VRPs for all
prefixes are provided. It can also be combined with one or more
ASN selections. Then all matching VRPs are included. That is,
selectors combine as “or” not “and”.

	
-m, --more-specifics

	Include VRPs with prefixes that are more specifics of those given
by the -p option. Without this option, only VRPs with
prefixes equal or less specific are included.

Note that VRPs with more specific prefixes have no influence on
whether a route is RPKI valid or invalid and therefore these VRPs
are of an informational nature only.

	
--no-route-origins, --no-router-keys, --no-aspas

	These three options can be used to exclude the various payload
types from being included in the output.

	
validate

	This command can be used to perform RPKI route origin validation for
one or more route announcements. Routinator will determine whether the
provided announcements are RPKI valid, invalid, or not found.

A single route announcement can be given directly on the command line:

	
-a asn, --asn=asn

	The AS Number of the autonomous system that originated the
route announcement. ASNs can be given with or without the
prefix AS.

	
-p prefix, --prefix=prefix

	The address prefix the route announcement is for.

	
-j, --json

	A detailed analysis on the reasoning behind the validation is
printed in JSON format including lists of the VRPs that caused
the particular result. If this option is omitted, Routinator
will only print the determined state.

Alternatively, a list of route announcements can be read from a file
or standard input.

	
-i file, --input=file

	If present, input is read from the given file. If the file is
given is a single dash, input is read from standard output.

	
-j, --json

	If this option is provided, the input is assumed to be JSON
format. It should consist of a single object with one member
routes which contains an array of objects. Each object
describes one route announcement through its prefix and asn
members which contain a prefix and originating AS Number as
strings, respectively.

If the option is not provided, the input is assumed to consist
of simple plain text with one route announcement per line,
provided as a prefix followed by an ASCII-art arrow =>
surrounded by white space and followed by the AS Number of
originating autonomous system.

The following additional options are available independently of the
input method.

	
-o file, --output=file

	Output is written to the provided file. If the option is
omitted or file is given as a single dash, output is written
to standard output.

	
-n, --noupdate

	The repository will not be updated before performing
validation.

	
--complete

	If any of the rsync commands needed to update the repository
failed, complete the operation but provide exit status 2. If
this option is not given, the operation will complete with exit
status 0 in this case.

	
server

	This command causes Routinator to act as a server for the
RPKI-to-Router (RTR) and HTTP protocols. In this mode, Routinator will
read all the Trust Anchor Locators and will stay attached to the
terminal unless the -d option is given.

The server will periodically update the local repository, every ten
minutes by default, notify any clients of changes, and let them fetch
validated data. It will not, however, reread the trust anchor
locators. Thus, if you update them, you will have to restart
Routinator.

You can provide a number of addresses and ports to listen on for RTR
and HTTP through command line options or their configuration file
equivalent. Currently, Routinator will only start listening on these
ports after an initial validation run has finished.

It will not listen on any sockets unless explicitly specified. It will
still run and periodically update the repository. This might be useful
for use with vrps mode with the -n option.

	
-d, --detach

	If present, Routinator will detach from the terminal after a
successful start.

	
--rtr=addr:port

	Specifies a local address and port to listen on for incoming
RTR connections.

Routinator supports both protocol version 0 defined in
RFC 6810 [https://datatracker.ietf.org/doc/html/rfc6810.html] and version 1 defined in RFC 8210 [https://datatracker.ietf.org/doc/html/rfc8210.html]. However, it
does not support router keys introduced in version 1. IPv6
addresses must be enclosed in square brackets. You can provide
the option multiple times to let Routinator listen on multiple
address-port pairs.

	
--rtr-tls=addr:port

	Specifies a local address and port to listen for incoming
TLS-encrypted RTR connections.

The private key and server certificate given via the
--rtr-tls-key and --rtr-tls-cert or their
equivalent config file options will be used for connections.

The option can be given multiple times, but the same key and
certificate will be used for all connections.

	
--http=addr:port

	Specifies the address and port to listen on for incoming HTTP
connections. See HTTP SERVICE below for more information on
the HTTP service provided by Routinator.

	
--http-tls=addr:port

	Specifies a local address and port to listen of for incoming
TLS-encrypted HTTP connections.

The private key and server certificate given via the
--http-tls-key and --http-tls-cert or their
equivalent config file options will be used for connections.

The option can be given multiple times, but the same key and
certificate will be used for all connections.

	
--listen-systemd

	The RTR listening socket will be acquired from systemd via
socket activation. Use this option together with systemd’s
socket units to allow a Routinator running as a regular user to
bind to the default RTR port 323.

Currently, all TCP listener sockets handed over by systemd will
be used for the RTR protocol.

	
--rtr-tcp-keepalive=seconds

	The number of seconds to wait before sending a TCP keepalive on
an established RTR connection. By default, TCP keepalive is
enabled on all RTR connections with an idle time of 60 seconds.
Set this option to 0 to disable keepalives.

On some systems, notably OpenBSD, this option only enables TCP
keepalives if set to any value other than 0. You will have to
use the system’s own mechanisms to change the idle times.

	
--rtr-client-metrics

	If provided, the server metrics will include separate metrics
for every RTR client. Clients are identified by their RTR
source IP address. This is disabled by default to avoid
accidentally leaking information about the local network
topology.

	
--rtr-tls-key

	Specifies the path to a file containing the private key to be
used for RTR-over-TLS connections. The file has to contain
exactly one private key encoded in PEM format.

	
--rtr-tls-cert

	Specifies the path to a file containing the server certificates
to be used for RTR-over-TLS connections. The file has to
contain one or more certificates encoded in PEM format.

	
--http-tls-key

	Specifies the path to a file containing the private key to be
used for HTTP-over-TLS connections. The file has to contain
exactly one private key encoded in PEM format.

	
--http-tls-cert

	Specifies the path to a file containing the server certificates
to be used for HTTP-over-TLS connections. The file has to
contain one or more certificates encoded in PEM format.

	
--refresh=seconds

	The amount of seconds the server should wait after having
finished updating and validating the local repository before
starting to update again. The next update will be earlier if
objects in the repository expire earlier. The default value is
600 seconds.

	
--retry=seconds

	The amount of seconds to suggest to an RTR client to wait
before trying to request data again if that failed. The default
value is 600 seconds, as recommended in RFC 8210 [https://datatracker.ietf.org/doc/html/rfc8210.html].

	
--expire=seconds

	The amount of seconds to an RTR client can keep using data if
it cannot refresh it. After that time, the client should
discard the data. Note that this value was introduced in
version 1 of the RTR protocol and is thus not relevant for
clients that only implement version 0. The default value, as
recommended in RFC 8210 [https://datatracker.ietf.org/doc/html/rfc8210.html], is 7200 seconds.

	
--history=count

	In RTR, a client can request to only receive the changes that
happened since the last version of the data it had seen. This
option sets how many change sets the server will at most keep.
If a client requests changes from an older version, it will get
the current full set.

Note that routers typically stay connected with their RTR
server and therefore really only ever need one single change
set. Additionally, if RTR server or router are restarted, they
will have a new session with new change sets and need to
exchange a full data set, too. Thus, increasing the value
probably only ever increases memory consumption.

The default value is 10.

	
--pid-file=path

	States a file which will be used in daemon mode to store the
processes PID. While the process is running, it will keep the
file locked.

	
--working-dir=path

	The working directory for the daemon process. In daemon mode,
Routinator will change to this directory while detaching from
the terminal.

	
--chroot=path

	The root directory for the daemon process. If this option is
provided, the daemon process will change its root directory to
the given directory. This will only work if all other paths
provided via the configuration or command line options are
under this directory.

	
--user=user-name

	The name of the user to change to for server mode. It this
option is provided, Routinator will run as that user after the
listening sockets for HTTP and RTR have been created. This may
cause problems, if the user is not allowed to write to the
directory given as repository directory or local exception
files.

	
--group=group-name

	The name of the group to change to for server mode. It this
option is provided, Routinator will run as that group after the
listening sockets for HTTP and RTR have been created.

	
update

	Updates the local repository by resyncing all known publication
points. The command will also validate the updated repository to
discover any new publication points that appear in the repository and
fetch their data.

As such, the command really is a shortcut for running
routinator vrps -f none.

	
--complete

	If any of the rsync commands needed to update the repository
failed, Routinator completes the operation and exits with
status code 2. If this option is not given, the operation will
complete with exit status 0 in this case.

	
dump

	Writes the content of all stored data to the file system. This is
primarily intended for debugging but can be used to get access to the
view of the RPKI data that Routinator currently sees.

	
-o dir, --output=dir

	Write the output to the given directory. If the option is omitted,
the current directory is used.

Three directories will be created in the output directory:

The rrdp directory will contain all the files collected via RRDP
from the various repositories. Each repository is stored in its own
directory. The mapping between rpkiNotify URI and path is provided in
the repositories.json file. For each repository, the files are
stored in a directory structure based on the components of the file as
rsync URI.

The rsync directory contains all the files collected via rsync. The
files are stored in a directory structure based on the components of
the file’s rsync URI.

The store directory contains all the files used for validation.
Files collected via RRDP or rsync are copied to the store if they are
correctly referenced by a valid manifest. This part contains one
directory for each RRDP repository similarly structured to the rrdp
directory and one additional directory rsync that contains files
collected via rsync.

	
man

	Displays the manual page, i.e., this page.

	
-o file, --output=file

	If this option is provided, the manual page will be written to
the given file instead of displaying it. Use - to output the
manual page to standard output.

Configuration File

Instead of providing all options on the command line, they can also be
provided through a configuration file. Such a file can be selected through
the -c option. If no configuration file is specified this way but a
file named $HOME/.routinator.conf is present, this file is used.

The configuration file is a file in TOML format. In short, it consists of a
sequence of key-value pairs, each on its own line. Strings are to be enclosed
in double quotes. Lists can be given by enclosing a comma-separated list of
values in square brackets.

The configuration file can contain the following entries. All path values are
interpreted relative to the directory the configuration file is located in.
All values can be overridden via the command line options.

	repository-dir
	A string containing the path to the directory to store the local
repository in. This entry is mandatory.

	no-rir-tals
	A boolean specifying whether the five RIR Trust Anchor Locators
(TALs) should not be added to the set of evaluated TALs. If
missing, the RIR TALs will be used.

	tals
	A list of strings, each containing the name of a bundled TAL to
be added to the set of TALs to be evaluated.

	extra-tals-dir
	A string containing the path to a directory that contains
additional TALs.

	exceptions
	A list of strings, each containing the path to a file with local
exceptions. If missing, no local exception files are used.

	strict
	A boolean specifying whether strict validation should be
employed. If missing, strict validation will not be used.

	stale
	A string specifying the policy for dealing with stale objects.

	reject
	Consider all stale objects invalid rendering all material
published by the CA issuing the stale object to be invalid
including all material of any child CA. This is the default
policy if the value is missing.

	warn
	Consider stale objects to be valid but print a warning to
the log.

	accept
	Quietly consider stale objects valid.

	unsafe-vrps
	A string specifying the policy for dealing with unsafe VRPs.

	reject
	Filter unsafe VRPs and add warning messages to the log.

	warn
	Warn about unsafe VRPs in the log but add them to the final
set of VRPs.

	accept
	Quietly add unsafe VRPs to the final set of VRPs. This is
the default policy if the value is missing.

	unknown-objects
	A string specifying the policy for dealing with unknown RPKI
object types.

	reject
	Reject the object and its issuing CA.

	warn
	Warn about the object but ignore it and accept the issuing
CA. This is the default policy if the value is missing.

	accept
	Quietly ignore the object and accept the issuing CA.

	limit-v4-len
	An integer value which, if present, limits the length of IPv4
prefixes for which VPRs are included in the data set to the given
value.

	limit-v6-len
	An integer value which, if present, limits the length of IPv6
prefixes for which VPRs are included in the data set to the given
value.

	allow-dubious-hosts
	A boolean value that, if present and true, disables Routinator’s
filtering of dubious host names in rsync and HTTPS URIs from RPKI
data.

	disable-rsync
	A boolean value that, if present and true, turns off the use of
rsync.

	rsync-command
	A string specifying the command to use for running rsync. The
default is simply rsync.

	rsync-args
	A list of strings containing the arguments to be passed to the
rsync command. Each string is an argument of its own.

If this option is not provided, Routinator will try to find out
if your rsync understands the --contimeout option and, if so,
will set it to 10 thus letting connection attempts time out after
ten seconds. If your rsync is too old to support this option, no
arguments are used.

	rsync-timeout
	An integer value specifying the number seconds an rsync command
is allowed to run before it is being terminated. The default if
the value is missing is 300 seconds. Set the value to 0 to turn
the timeout off.

	disable-rrdp
	A boolean value that, if present and true, turns off the use of
RRDP.

	rrdp-fallback
	A string value specifying the circumstances under which an update
via rsync is tried if an update via RRDP fails. See
--rrdp-fallback for details on the available policies.

	rrdp-fallback-time
	An integer value specifying the maximum number of seconds since a
last successful update of an RRDP repository before Routinator
falls back to using rsync. The default in case the value is
missing is 3600 seconds. If the value provided is smaller than
twice the refresh time, it is silently increased to that value.

	rrdp-max-delta-count
	An integer value that specifies the maximum number of deltas
necessary to update an RRDP repository before using the snapshot
instead. If the value is missing, the default of 100 is used.

	rrdp-timeout
	An integer value that provides a timeout in seconds for all
individual RRDP-related network operations, i.e., connects,
reads, and writes. If the value is missing, a default timeout of
300 seconds will be used. Set the value to 0 to turn the timeout
off.

	rrdp-connect-timeout
	An integer value that, if present, sets a separate timeout in
seconds for RRDP connect requests only.

	rrdp-tcp-keepalive
	An integer value that provides the duration in seconds for the
TCP keepalive option on RRDP connections. If the value is missing,
a duration of 60 seconds is used. Set the value to 0 to disable
the use of TCP keepalive for RRDP connections.

	rrdp-local-addr
	A string value that provides the local address to be used by RRDP
connections.

	rrdp-root-certs
	A list of strings each providing a path to a file containing a
trust anchor certificate for HTTPS authentication of RRDP
connections. In addition to the certificates provided via this
option, the system’s own trust store is used.

	rrdp-proxies
	A list of string each providing the URI for a proxy for outgoing
RRDP connections. The proxies are tried in order for each
request. HTTP and SOCKS5 proxies are supported.

	rrdp-keep-responses
	A string containing a path to a directory into which the bodies
of all HTTPS responses received from RRDP servers will be stored.
The sub-path will be constructed using the components of the
requested URI. For the responses to the notification files, the
timestamp is appended to the path to make it possible to
distinguish the series of requests made over time.

	max-object-size
	An integer value that provides a limit for the size of individual
objects received via either rsync or RRDP to the given number of
bytes. The default value if this option is not present is
20,000,000 (i.e., 20 MBytes). A value of 0 disables the limit.

	max-ca-depth
	An integer value that specifies the maximum number of CAs a given
CA may be away from a trust anchor certificate before it is
rejected. If the option is missing, a default of 32 will be used.

	enable-bgpsec
	A boolean value specifying whether BGPsec router keys should be
included in the published dataset. If false or missing, no router
keys will be included.

	dirty
	A boolean value which, if true, specifies that unused files and
directories should not be deleted from the repository directory
after each validation run. If left out, its value will be false
and unused files will be deleted.

	validation-threads
	An integer value specifying the number of threads to be used
during validation of the repository. If this value is missing,
the number of CPUs in the system is used.

	log-level
	A string value specifying the maximum log level for which log
messages should be emitted. The default is warn.

See LOGGING below for more information on what information is
logged at the different levels.

	log
	A string specifying where to send log messages to. This can be
one of the following values:

	default
	Log messages will be sent to standard error if Routinator
stays attached to the terminal or to syslog if it runs in
daemon mode.

	stderr
	Log messages will be sent to standard error.

	syslog
	Log messages will be sent to syslog.

	file
	Log messages will be sent to the file specified through
the log-file configuration file entry.

The default if this value is missing is, unsurprisingly,
default.

	log-file
	A string value containing the path to a file to which log
messages will be appended if the log configuration value is set
to file. In this case, the value is mandatory.

	syslog-facility
	A string value specifying the syslog facility to use for logging
to syslog. The default value if this entry is missing is
daemon.

	rtr-listen
	An array of string values each providing an address and port on
which the RTR server should listen in TCP mode. Address and port
should be separated by a colon. IPv6 address should be enclosed
in square brackets.

	rtr-tls-listen
	An array of string values each providing an address and port
on which the RTR server should listen in TLS mode. Address and
port should be separated by a colon. IPv6 address should be
enclosed in square brackets.

	http-listen
	An array of string values each providing an address and port
on which the HTTP server should listene. Address and
port should be separated by a colon. IPv6 address should be
enclosed in square brackets.

	http-tls-listen
	An array of string values each providing an address and port
on which the HTTP server should listen in TLS mode. Address and
port should be separated by a colon. IPv6 address should be
enclosed in square brackets.

	listen-systemd
	The RTR TCP listening socket will be acquired from systemd via
socket activation. Use this option together with systemd’s socket
units to allow Routinator running as a regular user to bind to
the default RTR port 323.

	rtr-tcp-keepalive
	An integer value specifying the number of seconds to wait before
sending a TCP keepalive on an established RTR connection. If this
option is missing, TCP keepalive will be enabled on all RTR
connections with an idle time of 60 seconds. If this option is
present and set to zero, TCP keepalives are disabled.

On some systems, notably OpenBSD, this option only enables TCP
keepalives if set to any value other than 0. You will have to
use the system’s own mechanisms to change the idle times.

	rtr-client-metrics
	A boolean value specifying whether server metrics should include
separate metrics for every RTR client. If the value is missing,
no RTR client metrics will be provided.

	rtr-tls-key
	A string value providing the path to a file containing the
private key to be used by the RTR server in TLS mode. The file
must contain one private key in PEM format.

	rtr-tls-cert
	A string value providing the path to a file containing the server
certificates to be used by the RTR server in TLS mode. The file
must contain one or more certificates in PEM format.

	http-tls-key
	A string value providing the path to a file containing the
private key to be used by the HTTP server in TLS mode. The file
must contain one private key in PEM format.

	http-tls-cert
	A string value providing the path to a file containing the server
certificates to be used by the HTTP server in TLS mode. The file
must contain one or more certificates in PEM format.

	refresh
	An integer value specifying the number of seconds Routinator
should wait between consecutive validation runs in server mode.
The next validation run will happen earlier, if objects expire
earlier. The default is 600 seconds.

	retry
	An integer value specifying the number of seconds an RTR client
is requested to wait after it failed to receive a data set. The
default is 600 seconds.

	expire
	An integer value specifying the number of seconds an RTR client
is requested to use a data set if it cannot get an update before
throwing it away and continuing with no data at all. The default
is 7200 seconds if it cannot get an update before throwing it
away and continuing with no data at all. The default is 7200
seconds.

	history-size
	An integer value specifying how many change sets Routinator
should keep in RTR server mode. The default is 10.

	pid-file
	A string value containing a path pointing to the PID file to be
used in daemon mode.

	working-dir
	A string value containing a path to the working directory for the
daemon process.

	chroot
	A string value containing the path any daemon process should use
as its root directory.

	user
	A string value containing the user name a daemon process should
run as.

	group
	A string value containing the group name a daemon process should
run as.

	tal-labels
	An array containing arrays of two string values mapping the name
of a TAL file (without the path but including the extension) as
given by the first string to the name of the TAL to be included
where the TAL is referenced in output as given by the second
string.

If the options missing or if a TAL isn’t mentioned in the option,
Routinator will construct a name for the TAL by using its file
name (without the path) and dropping the extension.

HTTP Service

Routinator can provide an HTTP service allowing to fetch the Validated ROA
Payload in various formats. The service does not support HTTPS and should
only be used within the local network.

The service only supports GET requests with the following paths:

	/metrics

	Returns a set of monitoring metrics in the format used by Prometheus.

	/status

	Returns the current status of the Routinator instance. This is similar
to the output of the /metrics endpoint but in a more human friendly
format.

	/api/v1/status
	Returns the current status in JSON format.

	/log

	Returns the logging output of the last validation run. The log level
matches that set upon start.

Note that the output is collected after each validation run and is
therefore only available after the initial run has concluded.

	/version

	Returns the version of the Routinator instance.

	/api/v1/validity/as-number/prefix
	Returns a JSON object describing whether the route announcement given
by its origin AS Number and address prefix is RPKI valid, invalid, or
not found. The returned object is compatible with that provided by the
RIPE NCC RPKI Validator. For more information, see
https://ripe.net/support/documentation/developer-documentation/rpki-validator-api

	/validity?asn=as-number&prefix=prefix
	Same as above but with a more form-friendly calling convention.

	/json-delta, /json-delta?session=session&serial=serial
	Returns a JSON object with the changes since the dataset version
identified by the session and serial query parameters. If a delta
cannot be produced from that version, the full data set is returned and
the member reset in the object will be set to true. In either case,
the members session and serial identify the version of the data set
returned and their values should be passed as the query parameters in a
future request.

The members announced and withdrawn contain arrays with route
origins that have been announced and withdrawn, respectively, since the
provided session and serial. If reset is true, the withdrawn
member is not present.

	/json-delta/notify, /json-delta/notify?session=session&serial=serial
	Returns a JSON object with two members session and serial which
contain the session ID and serial number of the current data set.

If the session and serial query parameters are provided, and the
session ID and serial number of the current data set are identical
to the provided values, the request will not return until a new data
set is available. This can be used as a means to get notified when
the data set has been updated.

In addition, the current set of VRPs is available for each output format at a
path with the same name as the output format. E.g., the CSV output is
available at /csv.

These paths accept selector expressions to limit the VRPs returned in the
form of a query string. The field select-asn can be used to filter for
ASNs and the field select-prefix can be used to filter for prefixes. The
fields can be repeated multiple times.

In addition, the query parameter include=more-specifics will cause the
inclusion of VRPs for more specific prefixes of prefixes given via
select-prefix.

Finally, the query parameter exclude can be used to exclude certain
payload types from the response. The values routeOrigins, routerKeys,
and aspas disable inclusion of route origins, router keys, and ASPAs,
respectively. The values can either be given in separate exclude
parameters or included in one separated by commas.

These parameters work in the same way as the options of the same name to the
vrps command.

Logging

In order to allow diagnosis of the VRP data set as well as its overall
health, Routinator logs an extensive amount of information. The log levels
used by syslog are utilized to allow filtering this information for
particular use cases.

The log levels represent the following information:

	error
	Information related to events that prevent Routinator from continuing
to operate at all as well as all issues related to local configuration
even if Routinator will continue to run.

	warn
	Information about events and data that influences the set of VRPs
produced by Routinator. This includes failures to communicate with
repository servers, or encountering invalid objects.

	info
	Information about events and data that could be considered abnormal but
do not influence the set of VRPs produced. For example, when filtering
of unsafe VRPs is disabled, the unsafe VRPs are logged with this level.

	debug
	Information about the internal state of Routinator that may be useful
for, well, debugging.

Validation

In vrps and server mode, Routinator will produce a set of
VRPs from the data published in the RPKI repository. It will walk over all
certification authorities (CAs) starting with those referred to in the
configured TALs.

Each CA is checked whether all its published objects are present, correctly
encoded, and have been signed by the CA. If any of the objects fail this
check, the entire CA will be rejected. If an object of an unknown type is
encountered, the behaviour depends on the unknown-objects policy. If this
policy has a value of reject the entire CA will be rejected. In this case,
only certificates (.cer), CRLs (.crl), manifests (.mft), ROAs (.roa), and
Ghostbuster records (.gbr) will be accepted.

If a CA is rejected, none of its ROAs will be added to the VRP set but also
none of its child CAs will be considered at all; their published data will
not be fetched or validated.

If a prefix has its ROAs published by different CAs, this will lead to some
of its VRPs being dropped while others are still added. If the VRP for the
legitimately announced route is among those having been dropped, the route
becomes RPKI invalid. This can happen both by operator error or through an
active attack.

In addition, if a VRP for a less specific prefix exists that covers the
prefix of the dropped VRP, the route will be invalidated by the less specific
VRP.

Because of this risk of accidentally or maliciously invalidating routes, VRPs
that have address prefixes overlapping with resources of rejected CAs are
called unsafe VRPs.

In order to avoid these situations and instead fall back to an RPKI unknown
state for such routes, Routinator allows to filter out these unsafe VRPs.
This can be enabled via the --unsafe-vrps=reject command line option or
setting unsafe-vrps=reject in the config file.

By default, this filter is currently disabled but warnings are logged about
unsafe VRPs. This allows to assess the operation impact of such a filter.
Depending on this assessment, the default may change in future versions.

One exception from this rule are CAs that have the full address space
assigned, i.e., 0.0.0.0/0 and ::/0. Adding these to the filter would wipe out
all VRPs. These prefixes are used by the RIR trust anchors to avoid having to
update these often. However, each RIR has its own address space so losing all
VRPs should something happen to a trust anchor is unnecessary.

Relaxed Decoding

The documents defining RPKI include a number of very strict rules regarding
the formatting of the objects published in the RPKI repository. However,
because RPKI reuses existing technology, real-world applications produce
objects that do not follow these strict requirements.

As a consequence, a significant portion of the RPKI repository is actually
invalid if the rules are followed. We therefore introduce two decoding modes:
strict and relaxed. Strict mode rejects any object that does not pass all
checks laid out by the relevant RFCs. Relaxed mode ignores a number of these
checks.

This memo documents the violations we encountered and are dealing with in
relaxed decoding mode.

	Resource Certificates (RFC 6487 [https://datatracker.ietf.org/doc/html/rfc6487.html])
	Resource certificates are defined as a profile on the more general
Internet PKI certificates defined in RFC 5280 [https://datatracker.ietf.org/doc/html/rfc5280.html].

	Subject and Issuer
	The RFC restricts the type used for CommonName attributes to
PrintableString, allowing only a subset of ASCII characters,
while RFC 5280 [https://datatracker.ietf.org/doc/html/rfc5280.html] allows a number of additional string types.
At least one CA produces resource certificates with
Utf8Strings.

In relaxed mode, we will only check that the general structure
of the issuer and subject fields are correct and allow any
number and types of attributes. This seems justified since RPKI
explicitly does not use these fields.

	Signed Objects (RFC 6488 [https://datatracker.ietf.org/doc/html/rfc6488.html])
	Signed objects are defined as a profile on CMS messages defined in
RFC 5652 [https://datatracker.ietf.org/doc/html/rfc5652.html].

	DER Encoding
	RFC 6488 [https://datatracker.ietf.org/doc/html/rfc6488.html] demands all signed objects to be DER encoded while
the more general CMS format allows any BER encoding – DER is a
stricter subset of the more general BER. At least one CA does
indeed produce BER encoded signed objects.

In relaxed mode, we will allow BER encoding.

Note that this isn’t just nit-picking. In BER encoding, octet
strings can be broken up into a sequence of sub-strings. Since
those strings are in some places used to carry encoded content
themselves, such an encoding does make parsing significantly
more difficult. At least one CA does produce such broken-up
strings.

Signals

	SIGUSR1: Reload TALs and restart validation
	When receiving SIGUSR1, Routinator will attempt to reload the TALs and, if
that succeeds, restart validation. If loading the TALs fails, Routinator
will exit.

	SIGUSR2: Re-open log file
	When receiving SIGUSR2 and logging to a file is enabled, Routinator will
re-open the log file. If this fails, Routinator will exit.

Exit Status

Upon success, the exit status 0 is returned. If any fatal error happens, the
exit status will be 1. Some commands provide a --complete option
which will cause the exit status to be 2 if any of the rsync commands to
update the repository fail.

JSON Metrics

Routinator’s monitoring service provides comprehensive
metrics in JSON format /api/v1/status endpoint. Here you can find an
overview of all metrics and their meaning.

The JSON metrics consists of an object with the following members:

	version
	The version of Routinator.

	serial
	The current serial number for data served to
RTR clients.

	now
	The date and time in UTC when this report was created.

	lastUpdateStart
	The date and time in UTC when the last validation run started.

	lastUpdateDone
	The date and time in UTC when the last validation run completed.

	lastUpdateDuration
	The duration of the last validation run in seconds.

	tals
	Metrics for each configured trust anchor. In most cases these will be the
five Regional Internet Registries, but will include the trust anchors of any
configured testbeds
as well.

Each element of this object contains a publication metrics value as described below.

	repositories
	Metrics for each repository encountered during validation. Note that the
data given here relates to the repository content used during validation.
If the repository failed to update, then these numbers are from the stored
old data.

Each element of this object contains a publication metrics value as described below. In addition, there
is a member type that describes whether the repository is an RRDP or
rsync repository.

	vrpsAddedLocally
	The number of VRPs added to the final
data set from local exceptions.

	rsync
	Metrics for updates via rsync.

This is an object with one element for each repository that was updated via
rsync during the last validation run. Each element contains an rsync
update metrics value as described
below.

	rrdp
	Metrics for updates via RRDP.

This is an object with one element for each repository that was updated via
rsync during the last validation run. Each element contains an RRDP
update metrics value as described below.

	rtr
	Metrics for the built-in RTR server. See
RTR metrics below.

	http
	Metrics for the built-in HTTP server. See
HTTP metrics below.

Publication Metrics

Publication metrics are provided both for all trust anchors and for each
RPKI repository. They contain the following information:

	vrpsTotal
	The total number of VRPs found to be
present and valid.

	vrpsUnsafe
	The number of VRPs that are considered
unsafe. Depending on configuration, these may be
included in the final set or dropped from it.

	vrpsLocallyFiltered
	The number of VRPs that are filtered
as the result of a local exception.

	vrpsDuplicate
	The number of duplicate VRPs
resulting from ROAs containing the same authorisation.

Note that if a VRP appears in multiple trust anchors or repositories,
which occurrence is considered the duplicate depends on the order of
processing which may change between validation runs. Thus, this number
may change unexpectedly.

	vrpsFinal
	The number of VRPs that are
contributed by this trust anchor or repository to the final set provided
to your routers. This is the total number of VRPs,
minus the ones that are locally filtered, duplicate, and, if configured to
be dropped, unsafe.

	validPublicationPoints
	The number of valid publication points.

	rejectedPublicationPoints
	The number of rejected publication points.

A publication point is rejected if its manifest is invalid or if any
objects listed on the manifest are missing or have a different content
hash.

	validManifests
	The number of valid manifests.

	invalidManifests
	The number of invalid manifests.

A manifest is invalid if it is not correctly encoded, has expired or
is not correctly signed by the issuing CA.

	staleManifests
	The number of stale manifests.

A manifest is stale if the current time is past the time an update to
the manifest should have been issued. Whether a stale manifest is valid
or invalid depends on configuration. By default it is considered invalid.

	missingManifests
	The number of missing manifests.

	validCRLs
	The number of valid certificate revocation lists.

	invalidCRLs
	The number of invalid certificate revocation lists.

A CRL is invalid if it is not correctly encoded or
is not correctly signed by the issuing CA.

	staleCRLs
	The number of stale certificate revocation
lists.

A CRL is stale if the current time is past the time an update
should have been issued. Whether a stale CRL is valid
or invalid depends on configuration. By default it is considered invalid.

	strayCRLs
	The number of stray certificate revocation lists.

Each CA should only issue one CRL. This CRL should both be listed on the
manifest and used by the manifest’s certificate itself. Any manifest
listed on the manifest that is not also the manifest’s own CRL is
considered a stray.

	validCACerts
	The number of Certificate Authority (CA) certificates found to be present
and valid.

	validEECerts
	The number of End Entity (EE) certificates found to be present and valid.

This only refers to such certificates included as stand-alone files
which are BGPsec router certificates.

	invalidCerts
	The number of invalid stand-alone certificates, either CA or EE
certificates.

	validROAs
	The number of valid Route Origin Attestations

	invalidROAs
	The number of invalid Route Origin Attestations.

	validGBRs
	The number of valid Ghostbusters Records.

Note that currently the content of a Ghostbuster Record is not checked.

	InvalidGBRs
	The number of invalid Ghostbusters Records.

	otherObjects
	The number of objects found that are not certificates (.cer), Certificate
Revocation Lists (.crl), manifests (.mft), ROAs (.roa), or Ghostbuster
Records (.gbr).

Rsync Update Metrics

For each repository updated via rsync the following values are given.

	status
	The status code returned by the rsync process. A value of 0 means the
process has finished successfully. The meaning of other values depends
on the rsync client used. Please refer to its documentation for further
details.

	duration
	The duration the rsync process was running in seconds.

RRDP Update Metrics

For each repository updated via RRDP the following values are given.

	status
	The overall status of the update. This will be 200 if the updated
succeeded, 304 if no update was necessary because the data was already
current, and any other value for a failed update. If the value is -1,
it was not possible to reach the HTTPS server at all.

	notifyStatus
	The status of retrieving the notification file. This is the first step
of an RRDP update. A value of 200 indicates that the file was successfully
retrieved. A value of 304 indicates that the file hasn’t changed since
last update and no actual update is necessary. Any other value represents
an error.

	payloadStatus
	The status of retrieving the actual payload. This is the second step
of an RRDP update and may either represent a single HTTPS request for
the snapshot file or a series of HTTPS request for the sequence of delta
files necessary to update from the last known state.

A value of 0 means that no payload retrieval was necessary. A value of
200 means that the update was successful. Any other value indicates an
error. In case of a sequence of delta updates, this error may have been
preceded by one or more successful requests.

	duration
	The overall duration of the RRDP update in seconds.

	serial
	The serial number stated by the RRDP server for the current data set.
With each update the serial number is increased by one.

	session
	The identifier of the current session of the RRDP server. Serial numbers
are only valid within the same session. If the server needs to restart its
sequence for whatever reason, it needs to choose a new session ID and all
data will have to be updated through a snapshot.

	delta
	Whether data was updated via a sequence of deltas (true) or a full
snapshot had to be retrieved (false).

	snapshotReason
	If this is not null, it provides a reason why a snapshot was used
instead of a delta as a short explanatory string.

RTR Server Metrics

A number of metrics are provided describing the state of the included RTR
server. These metrics are available whether the RTR server is actually
enabled or not.

	currentConnections
	The number of currently open RTR connections.

	bytesRead
	The total number of bytes read from RTR connections. In other words,
describes how much data has been sent by clients.

	bytesWritten
	The total number of bytes written to RTR connections. In other words,
describes how much data has been sent to clients.

If rtr-client-metrics are enabled via configuration or command line,
an additional object clients will appear that list the IP addresses of
clients seen by the RTR server providing the following information for them.

	connections
	The number of currently open connections from that address. The number
should normally be 0 or 1 but can be higher if the address is the public
side of a NAT.

	updated
	Contains the time of the last successful update by the client.

	lastReset
	Contains the time of the last successful cache reset by the client.

	resetQueries
	Contains the number of reset queries by the client.

	serialQueries
	Contains the number of serial queries by the client.

	serial
	The highest serial of the data provided to a client from that address.
This can be used to determine when the client has last updated.

	read and written
	Bytes read from and written to clients from that address.

HTTP Server Metrics

A number of metrics are provided describing the state of the included HTTP
server.

	totalConnections
	The total number of connections made with the HTTP server.

	currentConnections
	The number of currently open connections. This should at least be 1 as
there is a connection open when requesting the JSON metrics.

	requests
	The total number of requests received and answered by the HTTP server.

	bytesRead and bytesWritten
	The number of bytes read from and written to HTTP clients.

Prometheus Metrics

Routinator’s monitoring service provides comprehensive
metrics in Prometheus format at the /metrics endpoint. Here you can
find an overview of all metrics and their meaning.

	routinator_last_update_start
	Seconds since the start of the last update.

	routinator_last_update_duration
	Duration of the last update in seconds.

	routinator_last_update_done
	Seconds since the end of the last update.

	routinator_serial
	The current serial number for data served to
RTR clients.

Publication Metrics

Publication metrics are provided for all trust anchors and for each RPKI
repository.

All metrics for trust anchors have a label name, named after the Trust
Anchor Locator file name without the .tal extension, e.g. arin. All metrics
for repositories have a label uri specifying the URI of the notification
file of the RRDP repository, or the base URI of the rsync repository.

	routinator_{ta,repository}_publication_points_total
	The number of publication points per trust
anchor. In most cases these will be the five Regional Internet Registries,
but will include the trust anchors of any configured testbeds as well.

This metric has two labels: either name or uri, followed by the
state which is valid or rejected.

	routinator_{ta,repository}_objects_total
	Metrics for each configured trust anchor. In most cases these will be the
five Regional Internet Registries, but will include the trust anchors of any
configured testbeds
as well.

This metric has three labels: either name or uri, followed by
type for the type of object, e.g. crl, and lastly state describing
its validity state, such as valid or stale.

	The types and states of objects can be:
	
	manifest - The number of manifests for each of
the states valid, invalid, stale and missing. A manifest is
invalid if it is not correctly encoded, has expired or is not
correctly signed by the issuing CA. It is considered stale if the
current time is past the time an update to the manifest should have been
issued. Whether a stale manifest is valid or invalid depends on
configuration. By default a stale manifest is considered invalid.

	crl - The number of certificate revocation lists for each of the states valid, invalid,
stale and stray. A CRL is invalid if it is not correctly encoded
or is not correctly signed by the issuing CA. It is considered stale
if the current time is past the time an update to the manifest should
have been issued. Whether a stale manifest is valid or invalid
depends on configuration. By default a stale CRL is considered
invalid. Lastly, each CA should only issue one CRL. This CRL should
both be listed on the manifest and used by the manifest’s certificate
itself. Any manifest listed on the manifest that is not also the
manifest’s own CRL is considered a stray.

	ca_cert - The number of Certificate Authority (CA) certificates with
the state valid.

	router_cert - The number of router certificates found to be
present and valid. This only refers to such certificates included as
stand-alone files which are BGPsec router certificates.

	roa - The number of Route Origin Attestations for each of the states valid and invalid.

	gbr - The number of Ghostbusters Records for each of the states valid and invalid. Note that
currently the content of a Ghostbuster Record is not checked.

	other - The number of objects found that are not certificates
(.cer), Certificate Revocation Lists (.crl), manifests (.mft), ROAs
(.roa), or Ghostbuster Records (.gbr) and have the state invalid.

The following metrics all have just one label, either name in case of a
trust anchor or uri for repositories:

	routinator_{ta,repository}_valid_vrps_total
	The number of VRPs found to be
present and valid.

	routinator_{ta,repository}_unsafe_vrps_total
	The number of VRPs found to be
unsafe.

	routinator_{ta,repository}_locally_filtered_vrps_total
	The number of VRPs that are filtered
as the result of a local exception.

	routinator_{ta,repository}_duplicate_vrps_total
	The number of duplicate VRPs
resulting from ROAs containing the same authorisation.

Note that if a VRP appears in multiple trust anchors or repositories,
which occurrence is considered the duplicate depends on the order of
processing which may change between validation runs. Thus, this number
may change unexpectedly.

	routinator_{ta,repository}_contributed_vrps_total
	The number of VRPs that are
contributed by this trust anchor or repository to the final set provided to
your routers. This is the total number of VRPs, minus the ones that are
locally filtered, duplicate, and, if configured to be dropped, unsafe.

Rsync Update Metrics

For each repository updated via rsync the following values are given.

	routinator_rsync_status
	The status code returned by the rsync process. A value of 0 means the
process has finished successfully. The meaning of other values depends
on the rsync client used. Please refer to its documentation for further
details.

	routinator_rsync_duration
	The duration the rsync process was running in seconds.

RRDP Update Metrics

For each repository updated via RRDP the following values are given. All metrics
have a label uri specifying the URI of the notification file of the RRDP
repository.

	routinator_rrdp_status
	The overall status of the update. This will be 200 if the updated
succeeded, 304 if no update was necessary because the data was already
current, and any other value for a failed update. If the value is -1,
it was not possible to reach the HTTPS server at all.

	routinator_rrdp_notification_status
	The status of retrieving the notification file. This is the first step
of an RRDP update. A value of 200 indicates that the file was successfully
retrieved. A value of 304 indicates that the file hasn’t changed since
last update and no actual update is necessary. Any other value represents
an error.

	routinator_rrdp_payload_status
	The status of retrieving the actual payload. This is the second step
of an RRDP update and may either represent a single HTTPS request for
the snapshot file or a series of HTTPS request for the sequence of delta
files necessary to update from the last known state.

A value of 0 means that no payload retrieval was necessary. A value of
200 means that the update was successful. Any other value indicates an
error. In case of a sequence of delta updates, this error may have been
preceded by one or more successful requests.

	routinator_rrdp_duration
	The overall duration of the RRDP update in seconds.

	routinator_rrdp_serial_info
	The serial number stated by the RRDP server for the current data set.
With each update the serial number is increased by one.

RTR Server Metrics

A number of metrics are provided describing the state of the included RTR
server. These metrics are available whether the RTR server is actually
enabled or not.

	routinator_rtr_current_connections
	The number of currently open RTR connections.

	routinator_rtr_bytes_read
	The total number of bytes read from RTR connections. In other words,
describes how much data has been sent by clients.

	routinator_rtr_bytes_written
	The total number of bytes written to RTR connections. In other words,
describes how much data has been sent to clients.

	routinator_rtr_client_last_reset_seconds
	The amount of seconds since last cache reset by a client address.

	routinator_rtr_client_reset_queries
	The number of reset queries by a client address.

	routinator_rtr_client_serial_queries
	The number of of serial queries by a client address.

New in version 0.12.0: routinator_rtr_client_last_reset_seconds,
routinator_rtr_client_reset_queries and
routinator_rtr_client_serial_queries

HTTP Server Metrics

A number of metrics are provided describing the state of the included HTTP
server.

	routinator_http_connections
	The total number of connections made with the HTTP server.

	routinator_http_current_connections
	The number of currently open connections. This should at least be 1 as
there is a connection open when requesting the JSON metrics.

	requests
	The total number of requests received and answered by the HTTP server.

	routinator_http_bytes_read and routinator_http_bytes_written
	The number of bytes read from and written to HTTP clients.

Unsafe VRPs

Routinator is unique among relying party software in its ability to alert
operators to a subtle condition we refer to as “Unsafe VRPs”. We will
explore that concept here.

If the address prefix of a Validated ROA Payload (VRP) overlaps with any
resources assigned to a Certification Authority (CA) that has been rejected
because it failed to validate completely, the VRP is said to be unsafe
since using it may lead to legitimate routes being flagged as RPKI Invalid.

In the Hosted RPKI systems that the five Regional Internet Registries offer,
all certificates and ROAs reside within a single system and all related
objects are published in a single repository. In addition, these systems do
not allow sub-delegation of resources. As a result, relying party software
will normally fetch and validate the entire set of objects, or in case of an
outage nothing at all. This makes the occurrence of unsafe VRPs highly
unlikely.

When an organisation runs RPKI with their own CA, they can delegate a subset
of their resources to another party, such as their customer, who in turn runs
their own CA. Both parties can publish in a repository they host themselves,
or one that is offered by a third party as a service. Because there are now
more variables at play, such as broken CAs or unavailable repositories, there
is a possibility of unsafe VRPs emerging.

Unsafe VRPs typically occur when the organisation that holds the superset of
resources publishes a ROA for their aggregate prefix, e.g. 2001:db8::/32-32,
and the customer publishes a ROA to authorise a more specific, e.g.
2001:db8:abcd:/48-48. Now, when the customer CA is unavailable for any reason
and validation fails, the VRP for 2001:db8:abcd:/48 will be marked as
unsafe. Note that the reason for the unavailability can be that the CA
itself is broken, or because the repository that hosts the ROA is unavailable
for a prolonged period.

Routinator has an --unsafe-vrps option that specifies how to deal
with unsafe resources when conditions creating unsafe VRPs exist. Currently,
the default policy is to accept unsafe VRPs. This means VRPs will not be
analysed for being unsafe at all, nor will any metrics be generated. The
other options are warn, which will report any unsafe VRP that was
encountered and reject, filtering out VRPs that are marked as unsafe. For
the latter two options metrics are made available.

Advanced Features

Routinator offers several advanced features to let operators gain operational
experience with some of the ongoing work in the Internet Engineering Task
Force to improve and augment RPKI.

Note

The Hosted RPKI systems that the RIRs offer currently only support the
creation of ROAs. To manage ASPA, BGPsec or other RPKI objects, you can
run Delegated RPKI with Krill [https://krill.docs.nlnetlabs.nl/].

ASPA

Autonomous System Provider Authorisation (ASPA), currently described in two
Internet drafts in the IETF, applies the concepts of authenticated origins we
know from ROAs to the propagation of routes. An ASPA is a digitally signed
object through which the holder of an Autonomous System (AS) can authorise
one or more other ASes as its upstream providers. When validated, an ASPA’s
content can be used for detection and mitigation of route leaks.

Note

ASPA support is temporarily behind a feature flag while the draft is under
discussion in the IETF. This way operators can gain operational experience
without unintended side effects. See
Enabling or Disabling Features for more information.

You can let Routinator process ASPA objects and include them in the published
dataset, as well as the metrics, using the --enable-aspa option
or by setting enable-aspa to True in the configuration
file. ASPA information will be exposed via RTR, as well as
in the json and jsonext output formats, e.g.:

{
 "metadata": {
 "generated": 1681829067,
 "generatedTime": "2023-04-18T14:44:27Z"
 },
 "roas": [{
 "asn": "AS196615",
 "prefix": "93.175.147.0/24",
 "maxLength": 24,
 "source": [{
 "type": "roa",
 "uri": "rsync://rpki.ripe.net/repository/DEFAULT/73/fe2d72-c2dd-46c1-9429-e66369649411/1/49sMtcwyAuAW2lVDSQBGhOHd9og.roa",
 "validity": {
 "notBefore": "2023-01-01T08:44:47Z",
 "notAfter": "2024-07-01T00:00:00Z"
 },
 "chainValidity": {
 "notBefore": "2023-04-18T14:32:13Z",
 "notAfter": "2023-04-20T00:00:00Z"
 },
 "stale": "2023-04-20T00:00:00Z"
 }]
 }],
 "routerKeys": [],
 "aspas": [{
 "customer": "AS64496",
 "afi": "ipv6",
 "providers": ["AS64499", "AS64511", "AS65551"],
 "source": [{
 "type": "aspa",
 "uri": "rsync://acmecorp.example.net/0/AS64496.asa",
 "tal": "ripe",
 "validity": {
 "notBefore": "2023-04-13T07:21:24Z",
 "notAfter": "2024-04-11T07:26:24Z"
 },
 "chainValidity": {
 "notBefore": "2023-04-18T14:32:13Z",
 "notAfter": "2023-04-20T00:00:00Z"
 },
 "stale": "2023-04-20T00:00:00Z"
 }]
 }]
}

See also

	A Profile for Autonomous System Provider Authorization [https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-profile]

	BGP AS_PATH Verification Based on Autonomous System Provider
Authorization (ASPA) Objects [https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-aspa-verification]

	Manage ASPA objects with Krill [https://krill.docs.nlnetlabs.nl/en/stable/manage-aspas.html]

New in version 0.13.0.

BGPsec

The goal of BGPsec, as described in RFC 8209 [https://datatracker.ietf.org/doc/html/rfc8209.html], is to provide full AS path
validation. For this operators will need to publish BGPsec router keys in the
RPKI. As there is currently very limited deployment, validating these objects
with Routinator is not enabled by default.

You can let Routinator process router keys and include them in the published
dataset, as well as the metrics, using the --enable-bgpsec option
or by setting enable-bgpsec to True in the configuration
file. BGPsec information will be exposed via RTR, as well as
in the SLURM, json and jsonext output formats, e.g.:

{
 "metadata": {
 "generated": 1626853335,
 "generatedTime": "2021-07-21T07:42:15Z"
 },
 "roas": [{
 "asn": "AS196615",
 "prefix": "93.175.147.0/24",
 "maxLength": 24,
 "source": [{
 "type": "roa",
 "uri": "rsync://rpki.ripe.net/repository/DEFAULT/73/fe2d72-c2dd-46c1-9429-e66369649411/1/49sMtcwyAuAW2lVDSQBGhOHd9og.roa",
 "validity": {
 "notBefore": "2021-01-01T04:39:56Z",
 "notAfter": "2022-07-01T00:00:00Z"
 },
 "chainValidity": {
 "notBefore": "2021-05-06T12:51:30Z",
 "notAfter": "2021-05-08T00:00:00Z"
 },
 "stale": "2021-05-08T00:00:00Z"
 }]
 }],
 "routerKeys": [{
 "asn": "AS64496",
 "SKI": "E2F075EC50E9F2EFCED81D44491D25D42A298D89",
 "routerPublicKey": "kwEwYHKoZIzj0CAtig5-QfEKpTtFgiqfiAFQg--LAQerAH2Mpp-GucoDAGBbhIqMFQYIKoZIzj0DAQcDQgAEgFcjQ_D33wNPsXxnAGb-mtZ7XQrVO9DQ6UlASh",
 "source": [{
 "type": "roa",
 "uri": "rsync://acmecorp.example.net/rpki/RIPE-NLACMECORP/R0tgdREopjYdeyeI-wXUJQ4p786.cer",
 "validity": {
 "notBefore": "2021-11-09T17:04:40Z",
 "notAfter": "2022-11-09T17:04:39Z"
 },
 "chainValidity": {
 "notBefore": "2022-01-16T14:45:51Z",
 "notAfter": "2021-01-18T00:00:00Z"
 },
 "stale": "2021-01-18T00:00:00Z"
 }]
 }],
 "aspas": []
}

See also

	BGPsec Protocol Specification [https://datatracker.ietf.org/doc/html/rfc8205.html]

	A Profile for BGPsec Router Certificates, Certificate Revocation
Lists, and Certification Requests [https://datatracker.ietf.org/doc/html/rfc8209.html]

	Manage BGPSec Router Certificates with Krill [https://krill.docs.nlnetlabs.nl/en/stable/manage-bgpsec.html]

New in version 0.11.0.

Resource Tagged Attestations

Resource Tagged Attestations (RTAs) allow any arbitrary file to be signed
‘with resources’ by one or more parties. The RTA object is a separate file
that cryptographically connects the document with a set of resources. The
receiver of the object can use Routinator to show these resources, and verify
that it was created by their rightful holder(s).

One practical example where RTA could be valuable is to authorise a Bring
Your Own IP (BYOIP) process, where you bring part or all of your publicly
routable IPv4 or IPv6 address range from your on-premises network to a cloud
provider. The document authorising BYOIP could be signed using RTA.

RTA objects can be generated using Krill, the RPKI Certificate Authority
software from NLnet Labs, and you can use the MyAPNIC hosted service. The
objects can be validated using Routinator if it is built with RTA support,
using the features
functionality provided by Cargo:

cargo install --locked --features rta routinator

You can now interactively validate an RTA signed object. If it is valid,
Routinator will report the resources used to sign the object:

routinator rta acme-corp-byoip.rta

192.0.2.0/24
203.0.113.0/24
2001:db8::/48

See also

	A profile for Resource Tagged Attestations (RTAs) [https://datatracker.ietf.org/doc/html/draft-ietf-sidrops-rpki-rta]

	Moving RPKI Beyond Routing Security [https://blog.nlnetlabs.nl/moving-rpki-beyond-routing-security/]

	A proof-of-concept for constructing and validating RTAs [https://github.com/APNIC-net/rpki-rta-demo]

New in version 0.8.0.

Glossary

	Certificate Revocation List (CRL)
	A list of digital certificates that have been revoked by the issuing
Certificate Authority (CA) before their scheduled expiration date and should
no longer be trusted. Each entry in a Certificate Revocation List includes
the serial number of the revoked certificate and the revocation date. The
CRL file is signed by the CA to prevent tampering. The RPKI CRL profile is
defined in RFC 6487 [https://datatracker.ietf.org/doc/html/rfc6487.html].

	Ghostbusters Record (GBR)
	An RPKI object described in RFC 6493 [https://datatracker.ietf.org/doc/html/rfc6493.html] that contains human contact
information that may be verified (indirectly) by a CA certificate. The data
in the record are those of a severely profiled vCard. Note that support for
publication of GBR records is not widely implemented yet. As a result,
Routinator will validate the object, but not produce any output for it.

	Manifest
	A manifest is a signed object that contains a listing of all the signed
objects in the repository publication point associated with an authority
responsible for publishing in the repository. Refer to RFC 6486 [https://datatracker.ietf.org/doc/html/rfc6486.html] for more
information.

	Maximum Prefix Length (MaxLength)
	The most specific announcement of an IP prefix an Autonomous System is
authorised to do according to the published ROA.

	Publication Point
	A directory within a repository that contains all the
objects published by a single CA.

	Repository
	The RPKI repository system consists of multiple distributed and delegated
repository publication points. Each repository
publication point is associated with one or more RPKI certificates’
publication points.

	Resource Public Key Infrastructure (RPKI)
	RPKI proves the association between specific IP address blocks or Autonomous
System Numbers (ASNs) and the holders of those Internet number resources.
The certificates are proof of the resource holder’s right of use of their
resources and can be validated cryptographically. RPKI is based on an X.509
certificate profile defined in RFC 3779 [https://datatracker.ietf.org/doc/html/rfc3779.html]. Using RPKI to support secure
Internet routing is described in RFC 6480 [https://datatracker.ietf.org/doc/html/rfc6480.html].

	Route Origin Attestation (ROA)
	A cryptographically signed object that contains a statement authorising a
single Autonomous System Number (ASN) to originate one or more IP
prefixes, along with their maximum prefix length. A ROA can only be created
by the legitimate holder of the IP prefixes contained within it.

	Route Origin Validation (ROV)
	A mechanism by which route advertisements can be authenticated as
originating from an expected, authorised Autonomous System (AS).

	RPKI Relying Parties
	Those who want to use a Public Key Infrastructure (PKI) to validate
digitally signed attestations.

	RPKI Repository Delta Protocol (RRDP)
	Described in RFC 8182 [https://datatracker.ietf.org/doc/html/rfc8182.html], RRDP is a repository access protocol based on
Update Notification, Snapshot, and Delta Files that a Relying Party can retrieve over the HTTPS protocol.

	RPKI-to-Router (RPKI-RTR)
	The RPKI to Router protocol provides a simple but reliable mechanism for
routers to receive RPKI prefix origin data from a trusted cache. It is
standardised in RFC 6810 [https://datatracker.ietf.org/doc/html/rfc6810.html] (v0) and RFC 8210 [https://datatracker.ietf.org/doc/html/rfc8210.html] (v1).

	Stale Object
	In RPKI, manifests and CRLs can
be stale if the time given in their next-update field is in the past,
indicating that an update to the object was scheduled but didn’t happen. This
can be because of an operational issue at the issuer or an attacker trying to
replay old objects.

	Trust Anchor (TA)
	Each of the five Regional Internet Registries (RIRs) publishes a trust
anchor that includes all resources (a ‘0/0’ self-signed X.509 CA
certificate). They issue a child certificate containing all the resources
that are held and managed by the RIR.

	Trust Anchor Locator (TAL)
	The Trust Anchor Locator (TAL) is used to retrieve and verify the
authenticity of a trust anchor. Specified in
RFC 8630 [https://datatracker.ietf.org/doc/html/rfc8630.html], a TAL contains one or more URIs pointing to the RIR root
certificate, as well as the public key of the trust anchor in DER format,
encoded in Base64. The TAL is constant so long as the trust anchor’s public
key and its location do not change.

	Unsafe VRPs
	If the address prefix of a VRP
overlaps with any resources assigned to a CA that has been rejected because
if failed to validate completely, the VRP is said to be unsafe since using
it may lead to legitimate routes being flagged as RPKI Invalid.

	Validated ROA Payload (VRP)
	RPKI Relying Party software performs cryptographic verification on all
published ROAs. If everything
checks out, the software will produce one or more validated ROA payloads
(VRPs) for each ROA, depending on how many IP prefixes are contained with in
it. Each VRP is a tuple of an ASN, a single prefix and its maximum prefix
length. If verification fails, the ROA is discarded and it’ll be like no
statement was ever made.

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	
 	
 --allow-dubious-hosts

 	command line option

 	
 --asn

 	command line option

 	
 --chroot

 	command line option

 	
 --complete

 	command line option, [1], [2]

 	
 --config

 	command line option

 	
 --detach

 	command line option

 	
 --dirty

 	command line option

 	
 --disable-rrdp

 	command line option

 	
 --disable-rsync

 	command line option

 	
 --enable-bgpsec

 	command line option

 	
 --exceptions

 	command line option

 	
 --expire

 	command line option

 	
 --extra-tals-dir

 	command line option

 	
 --format

 	command line option

 	
 --fresh

 	command line option

 	
 --group

 	command line option

 	
 --help

 	command line option

 	
 --history

 	command line option

 	
 --http

 	command line option

 	
 --http-tls

 	command line option

 	
 --http-tls-cert

 	command line option

 	
 --http-tls-key

 	command line option

 	
 --input

 	command line option

 	
 --json

 	command line option, [1]

 	
 --limit-v4-len

 	command line option

 	
 --limit-v6-len

 	command line option

 	
 --listen-systemd

 	command line option

 	
 --logfile

 	command line option

 	
 --max-ca-depth

 	command line option

 	
 --max-object-size

 	command line option

 	
 --more-specifics

 	command line option

 	
 --no-aspas

 	command line option

 	
 --no-rir-tals

 	command line option

 	
 --no-route-origins

 	command line option

 	
 --no-router-keys

 	command line option

 	
 --noupdate

 	command line option, [1]

 	
 --output

 	command line option, [1], [2], [3]

 	
 --pid-file

 	command line option

 	
 --prefix

 	command line option

 	
 --quiet

 	command line option

 	
 --refresh

 	command line option

 	
 --repository-dir

 	command line option

 	
 --retry

 	command line option

 	
 --rrdp-connect-timeout

 	command line option

 	
 --rrdp-fallback

 	command line option

 	
 --rrdp-fallback-time

 	command line option

 	
 	
 --rrdp-keep-responses

 	command line option

 	
 --rrdp-local-addr

 	command line option

 	
 --rrdp-max-delta-count

 	command line option

 	
 --rrdp-proxy

 	command line option

 	
 --rrdp-root-cert

 	command line option

 	
 --rrdp-tcp-keepalive

 	command line option

 	
 --rrdp-timeout

 	command line option

 	
 --rsync-command

 	command line option

 	
 --rsync-timeout

 	command line option

 	
 --rtr

 	command line option

 	
 --rtr-client-metrics

 	command line option

 	
 --rtr-tcp-keepalive

 	command line option

 	
 --rtr-tls

 	command line option

 	
 --rtr-tls-cert

 	command line option

 	
 --rtr-tls-key

 	command line option

 	
 --select-asn

 	command line option

 	
 --select-prefix

 	command line option

 	
 --stale

 	command line option

 	
 --strict

 	command line option

 	
 --syslog

 	command line option

 	
 --syslog-facility

 	command line option

 	
 --tal

 	command line option

 	
 --unknown-objects

 	command line option

 	
 --unsafe-vrps

 	command line option

 	
 --user

 	command line option

 	
 --validation-threads

 	command line option

 	
 --verbose

 	command line option

 	
 --version

 	command line option

 	
 --working-dir

 	command line option

 	
 -a

 	command line option, [1]

 	
 -c

 	command line option

 	
 -d

 	command line option

 	
 -f

 	command line option

 	
 -h

 	command line option

 	
 -i

 	command line option

 	
 -j

 	command line option, [1]

 	
 -m

 	command line option

 	
 -n

 	command line option, [1]

 	
 -o

 	command line option, [1], [2], [3]

 	
 -p

 	command line option, [1]

 	
 -q

 	command line option

 	
 -r

 	command line option

 	
 -V

 	command line option

 	
 -v

 	command line option

 	
 -x

 	command line option

A

 	
 	allow-dubious-hosts

B

 	
 	bird1

 	
 	bird2

C

 	
 	Certificate Revocation List (CRL)

 	chroot

 	
 command line option

 	--allow-dubious-hosts

 	--asn

 	--chroot

 	--complete, [1], [2]

 	--config

 	--detach

 	--dirty

 	--disable-rrdp

 	--disable-rsync

 	--enable-bgpsec

 	--exceptions

 	--expire

 	--extra-tals-dir

 	--format

 	--fresh

 	--group

 	--help

 	--history

 	--http

 	--http-tls

 	--http-tls-cert

 	--http-tls-key

 	--input

 	--json, [1]

 	--limit-v4-len

 	--limit-v6-len

 	--listen-systemd

 	--logfile

 	--max-ca-depth

 	--max-object-size

 	--more-specifics

 	--no-aspas

 	--no-rir-tals

 	--no-route-origins

 	--no-router-keys

 	--noupdate, [1]

 	--output, [1], [2], [3]

 	--pid-file

 	--prefix

 	--quiet

 	--refresh

 	--repository-dir

 	--retry

 	--rrdp-connect-timeout

 	--rrdp-fallback

 	--rrdp-fallback-time

 	--rrdp-keep-responses

 	--rrdp-local-addr

 	--rrdp-max-delta-count

 	--rrdp-proxy

 	--rrdp-root-cert

 	--rrdp-tcp-keepalive

 	--rrdp-timeout

 	--rsync-command

 	--rsync-timeout

 	--rtr

 	--rtr-client-metrics

 	--rtr-tcp-keepalive

 	--rtr-tls

 	--rtr-tls-cert

 	--rtr-tls-key

 	--select-asn

 	--select-prefix

 	--stale

 	--strict

 	--syslog

 	--syslog-facility

 	--tal

 	--unknown-objects

 	--unsafe-vrps

 	--user

 	--validation-threads

 	--verbose

 	--version

 	--working-dir

 	-a, [1]

 	-c

 	-d

 	-f

 	-h

 	-i

 	-j, [1]

 	-m

 	-n, [1]

 	-o, [1], [2], [3]

 	-p, [1]

 	-q

 	-r

 	-v

 	-V

 	-x

 	
 	csv

 	csvcompat

 	csvext

D

 	
 	dirty

 	disable-rrdp

 	
 	disable-rsync

 	
 dump

 	module sub-command

E

 	
 	enable-bgpsec

 	exceptions

 	
 	expire

 	extra-tals-dir

G

 	
 	Ghostbusters Record (GBR)

 	
 	group

H

 	
 	history-size

 	http-listen

 	
 	http-tls-cert

 	http-tls-key

 	http-tls-listen

J

 	
 	json

 	
 	jsonext

L

 	
 	limit-v4-len

 	limit-v6-len

 	listen-systemd

 	
 	log

 	log-file

 	log-level

M

 	
 	
 man

 	module sub-command

 	Manifest

 	max-ca-depth

 	max-object-size

 	Maximum Prefix Length (MaxLength)

 	
 	
 module sub-command

 	dump

 	man

 	server

 	update

 	validate

 	vrps

N

 	
 	no-rir-tals

O

 	
 	openbgpd

P

 	
 	pid-file

 	
 	Publication Point

R

 	
 	refresh

 	Repository

 	repository-dir

 	Resource Public Key Infrastructure (RPKI)

 	retry

 	
 RFC

 	RFC 3779

 	RFC 5280, [1]

 	RFC 5652

 	RFC 6480

 	RFC 6486

 	RFC 6487, [1]

 	RFC 6488, [1]

 	RFC 6493

 	RFC 6810, [1], [2]

 	RFC 6810#section-7

 	RFC 8182

 	RFC 8209

 	RFC 8210, [1], [2], [3], [4]

 	RFC 8416, [1], [2]

 	RFC 8630, [1], [2]

 	Route Origin Attestation (ROA)

 	Route Origin Validation (ROV)

 	
 	RPKI Relying Parties

 	RPKI Repository Delta Protocol (RRDP)

 	RPKI-to-Router (RPKI-RTR)

 	rpsl

 	rrdp-connect-timeout

 	rrdp-fallback

 	rrdp-fallback-time

 	rrdp-keep-responses

 	rrdp-local-addr

 	rrdp-max-delta-count

 	rrdp-proxies

 	rrdp-root-certs

 	rrdp-tcp-keepalive

 	rrdp-timeout

 	rsync-args

 	rsync-command

 	rsync-timeout

 	rtr-client-metrics

 	rtr-listen

 	rtr-tcp-keepalive

 	rtr-tls-cert

 	rtr-tls-key

 	rtr-tls-listen

S

 	
 	
 server

 	module sub-command

 	slurm

 	stale

 	
 	Stale Object

 	strict

 	summary

 	syslog-facility

T

 	
 	tal-labels

 	tals

 	
 	Trust Anchor (TA)

 	Trust Anchor Locator (TAL)

U

 	
 	unknown-objects

 	Unsafe VRPs

 	unsafe-vrps

 	
 	
 update

 	module sub-command

 	user

V

 	
 	
 validate

 	module sub-command

 	Validated ROA Payload (VRP)

 	
 	validation-threads

 	
 vrps

 	module sub-command

W

 	
 	working-dir

 Page not found

Unfortunately we couldn't find the content you were looking for.

 _images/routinator-ui-prefix-check-related.png
eoe M < ®© ©

Results for 2001:7fc :: /47 - AS16509 VALID

At least one VRP Matches the Route Prefix

Matched VRPs

Prefix

2001:7fc:: /47

Unmatched VRPs - ASN

Prefix

2001:7fc:: /47

RELATED PREFIXES

Best Matching Prefix in Allocations and/or BGP

Prefix Exact
Match

> 2001:7fc:: /47 ALLOCATED

+ 1 more specific

Prefix

> 2001:7fc:: /48

@ routinator.ninetlabs.nl/2001%3A7fc%3A%3A%2F47?validate-bgp=true&in

Max Length

47

Max Length

47

REGION RIPE

BGP Origin ASN

AS16509

BGP Origin ASN

AS211321

+ 4 allocated to the same Organisation REGION RIPE

Prefix

> 185.49.140.0/22

> 151.216.0.0/23

> 2a04:b900 :: /29

> 2001:7fc:: /47

© 2021 Stichting NLnet Labs - Version routinator/0.10.1

BGP Origin ASN

NOT SEEN

AS16509

NOT SEEN

AS16509

& M+ O

ASN

AS16509

ASN

AS14618

RPKI Status

VALID

RPKI Status

INVALID

RPKI Status

VALID

VALID

Support contracts - Documentation - Report a problem

_images/routinator-ui-prefix-check.png
eee® M < > 0 & routinator.ninetlabs.nl/2001%3A7fc%3A%3A%2F47?validate-bgp=true&inc. ¢ M +

R@ U TI N ATO R Prefix Check Metrics Repositories Connections

Prefix or IP Address Origin ASN (optional)

2001:7fc::/47 AS16509

will be validated with BGP ASN

Validate hide options

ASN Lookup e

() Validate Prefixes for ASN found in BGP

Origin ASN Validation Source e

Longest Matching Prefix Exact Match only

Data Freshness @

RPKI 2021-09-15 7:40:59 UTC (56 minutes ago)
BGP 2021-09-15 2:06:09 UTC (6 hours ago)
RIR 2021-09-14 14:45:06 UTC - 2021-09-15 2:54:52 UTC (5 hours ago)

VALIDATION

Results for 2001:7fc :: /47 - AS16509 VALID

At least one VRP Matches the Route Prefix

Matched VRPs
Prefix Max Length ASN
2001:7fc:: /47 47 AS16509

Unmatched VRPs - ASN

Prefix Max Length ASN

2001:7fc:: /47 47 AS14618

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Routinator 0.14.0-dev

_static/minus.png

_images/routinator-repository-monitoring.png
@ =. Routinator AMS -~ | x @ o -] @ Last3days utc Refreshevery5m || @ || &
repo https:/rrdp.arin.net/notification.xml ~
v Repository Stats
Route Origin Attestations (ROAs) Validated ROA Payloads (VRPs) Valid Publication Points
39500 42700 2159
42690 2158
39000 ——d———'|
42680
2157
38500 42670
2156 =
42660
38000
42650 2155
37500 42640 2154
11/9 12:00 11/10 11/10 11/1 11/1 11/12 11/9 12:00 11/10 11/10 11/1 11/1 11/12 11/9 12:00 11/10 00:00 11/1012:00 11/11 00:00 11/1112:00 11/12 00:00
00:00 12:00 00:00 12:00 00:00 00:00 12:00 00:00 12:00 00:00
== Valid Current: 37766 . == Contributed (Valid minus Excluded) Current: 42698 . == Valid Publication Points Current: 2156 == Valid Manifests Current: 2156 == Valid CRLs Current: 2156 .
CA Certificates Excluded VRPs Rejected Publication Points
2187 5000 1
2186 4000 T T T - >
2185 3000 l_
2184 = 2000
2183 1000
2182 0 0
11/9 12:00 11/10 11/10 11/1 11/1 11/12 11/9 12:00 11/10 11/10 11/1 11/1 11/12 11/9 12:00 11/10 00:00 11/1012:00 11/11 00:00 11/1112:00 11/12 00:00
00:00 12:00 00:00 12:00 00:00 00:00 12:00 00:00 12:00 00:00
== Valid Current: 2184 . == Duplicate Current: 3001 == Locally Filtered Current:0 == Unsafe Current: 0 . == Rejected Publication Points Current: 0 == Stale Manifests Current: 0 == Invalid CRLs Current: 0 .
Update Duration
3s
2s
1s
Ons

11/9 08:00 11/9 12:00 11/9 16:00 11/9 20:00 11/10 00:00 11/10 04:00 11/10 08:00 11/1012:00 11/1016:00 11/1020:00 11/11 00:00 11/11 04:00 11/11 08:00 11/1112:00 11/1116:00 11/11 20:00 11/1200:00 11/1204:00

== RRDP Max:2.5s Avg: 597 ms Current: 518 ms

Connection Status

300
200
100
0
11/9 08:00 11/9 12:00 11/9 16:00 11/9 20:00 11/10 00:00 11/10 04:00 11/10 08:00 11/1012:00 11/1016:00 11/1020:00 11/11 00:00 11/11 04:00 11/11 08:00 11/1112:00 11/1116:00 11/11 20:00 11/1200:00 11/1204:00

== RRDP status code (200 = OK, 304 = Not Modified, 503 = Service Unavailable) Current: 200

_images/routinator-trust-anchor-monitoring.png
6 =. Routinator AMS -~ | x @ o -] @ Last3days utc Refresh every 5m
RIPE NCC VRPs APNIC VRPs Uptime and VRP count
142700 82900 C) AFRINIC Trust Anchor
142600 82850 OK for 4 months
142500 82800 @ APNIC Trust Anchor
OK for 4 months
142400 82750
@ ARIN Trust Anchor
142300 82700 OK for 2 months
11/9 12:00 11/1000:00 11/1012:00 11/11 00:00 11/1112:00 11/12 00:00 11/9 12:00 11/10 00:00 11/10 12:00 11/11 00:00 11/1112:00 11/12 00:00
= = @ LACNIC Trust Anchor
ARIN LACNIC OK for 4 months
47500 19950 @ RIPE NCC Trust Anchor
| 1 19900 OK for 4 months R
47000 19850 .
Last update duration
16500 19800
19750
46000 - 19700
11/9 12:00 11/10 00:00 11/10 12:00 11/11 00:00 11/1112:00 11/12 00:00 11/9 12:00 11/10 00:00 11/10 12:00 11/11 00:00 11/1112:00 11/12 00:00
o4 o4
AFRINIC All VRPs (logarithmic scale)
3.855K 524288 current
181072 — RIPENCC 142566 4 s
3.850K 32768
= APNIC 82875 ’\ A
8192 .
3.845K 2048 ~ LACNIC 19887
512 = ARIN 46106 RTR Serial
3.840 K 128 == AFRINIC 3850
11/9 12:00 11/1000:00 11/1012:00 11/11 00:00 11/1112:00 11/12 00:00 } 11/0 11/10 11710 1111 1111 11712 } 346 }
Total Validation Run Duration vs. RRDP or Rsync Update Time of Each Repo
800
600
400
200
o Shemeeliemta — F-io o, =l a e a——o

11/9 08:00 11/9 12:00 11/9 16:00 11/9 20:00 11/10 00:00 11/10 04:00 11/10 08:00 11/1012:00 11/1016:00 11/1020:00 11/11 00:00 11/11 04:00

11/11 08:00 11/1112:00

11/1116:00 11/11 20:00 11/1200:00 11/1204:00

== rsync://ca.rg.net/rpki/ Avg: 1 == rsync://chloe.sobornost.net/rpki/ Avg:2 == rsync://repo-rpki.idnic.net/repo/ Avg: 183 == rsync://rpki-repository.nic.ad.jp/ap/ Avg:7 == rsync://rpki.owl.net/rrdp/ Avg: 0 == https://ca.rg.net/rrdp/notify.xml Avg: 0 == https://cb.rg.net/rrdp/notify.xml Avg: 1

== https://cc.rg.net/rrdp/notify.xml Avg: 1 == https://chloe.sobornost.net/rpki/news-public.xml Avg: 2 == https://chloe.sobornost.net/rpki/news.xml Avg: 5 == https://krill-eval-ctec.charter.com/rrdp/notification.xml Avg:0 == https://magellan.ipxo.com/rrdp/notification.xml Avg: 0

== https://nostromo.heficed.net/rrdp/notification.xml Avg: 0 == https://repo-rpki.idnic.net/rrdp/notification.xml Avg: 20 == https://repo1.rpki.gs.nu/rrdp/notification.xml Avg: 0 == https://rpki-repo.registro.br/rrdp/notification.xml Avg: 5 == https://rpki-rrdp.mnihyc.com/rrdp/notification.xml Avg: 0

~= https:/rpki.admin.freerangecloud.com/rrdp/notification.xml Avg: 1 == https://rpki.akrn.net/rrdp/notification.xml Avg: 1 == https://rpki.apernet.io/rrdp/notification.xml Avg: 1 == https://rpki.as207960.net/rrdp/notification.xml Avg: 0 == https://rpki.blade.sh/rrdp/notification.xml Avg: 0

Q

